www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Lineares Wachstum
Lineares Wachstum < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 Mo 09.04.2007
Autor: MatheSckell

Aufgabe
Ein quaderförmiger Swimmingpool hat ein Fassungsvermögen von [mm] 120,0m^{3}. [/mm] Der zu beginn leere Pool wird durch einen konstanten Wasserzufluss von [mm] 5,0m^{3}/h [/mm] gefüllt.

a) Nach welcher Zeit ist der Pool zur Hälfte gefüllt?

b) In der Halben Höhe des Pools befindet sich eine defekte Düse, durch die 0,50 [mm] m^{3}/h [/mm] entweichen, sobald das Wasser diese Höhe erreicht hat. Wie lange dauert es, bis der Pool vollständig gefüllt ist.

Hallo liebes Forum,

Aufgabe a habe ich hinbekommen, dass sind 12h aber bei Aufgabe b weis ich nicht so richtig, was ich machen muss.

Die Zunahme des Wasserstandes veringert sich ja von 5 auf 4,5 [mm] m^{3}/h [/mm] ich weis auch, dass hier B(0)=60 sein muss, aber ich weis nicht wie ich da weiter machen soll.


Könnt Ihr mir bitte helfen!

Viele Grüsse und vielen Dank
MatheSckell

        
Bezug
Lineares Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Mo 09.04.2007
Autor: Dennis_M.

Hi,

a) hast du ja schon richtig beantwortet. Und bei b) hast du ja schon rausbekommen, dass das jetzt nur noch [mm] 4,5 \bruch{m^3}{h} [/mm] zufließen. Als Anfangswert hast du ebenfalls schon [mm] B(0)=60 [/mm].
Zu diesen [mm] 60 m^3 [/mm] kommen jetzt also [mm] 4,5 m^3 [/mm] pro Stunde dazu, also:
[mm] B(t)=60 + 4,5 * t [/mm] mit t in Stunden.
Du willst wissen, wann der Pool voll ist, also:
[mm] B(t)=120 [/mm]

Du setzt dann die 2. in die 1. Gleichung ein und erhältst:
[mm] 120=60 + 4,5 * t [/mm]
Dies löst du jetzt nach t auf:
[mm] 60 = 4,5 * t [/mm]
[mm] \bruch{60}{4,5} = t [/mm]
[mm] t = 13 \bruch{1}{3} [/mm]
Da eine Stunde 60 Minuten hat, entspricht [mm] \bruch{1}{3} [/mm] Stunde 20 Minuten. Also braucht man für die 2. Hälfte des Pools 13 Stunden 20 Minuten. Das sind zusammen mit der 1. Hälfte 25 Stunden 20 Minuten.

Gruß
Dennis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de