www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Linearität bed. E-Werte
Linearität bed. E-Werte < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearität bed. E-Werte: Tipp
Status: (Frage) überfällig Status 
Datum: 17:41 Di 13.10.2009
Autor: jerifak

Aufgabe
Beweis von E(aX+bY|Z)=aE(X|Z)+bE(Y|Z)

Hi!

Bräuchte hier bitte einen Tipp.

Ich habe mir das Problem erstmal in zweite Schritte geteilt, wobei der Erste ganz gut klappt denke ich:

[mm] E(aX|Z)=\integral{ax*f_{X|Z}(x|z)dx}=a\integral{x*f_{X|Z}(x|z)dx}=aE(X). [/mm]

Bleibt E(X+Y|Z)=E(X|Z)+E(Y|Z) zu zeigen.
Da X+Y ja einfach eine neue Zufallsvariable ist:

[mm] E(X+Y|Z)=\integral{(x+y)f_{(X+Y)|Z} ((x+y)|z) d(x+y)} [/mm] = [mm] \integral{x f_{(X+Y)|Z} ((x+y)|z) d(x+y)} +\integral{y f_{(X+Y)|Z} ((x+y)|z) d(x+y)} [/mm]

Und nun sehe ich keine Umformung die mir weiterhilft, wobei ich nicht davon ausgehe dass hier ein besonders schwerer Trick hintersteckt...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Linearität bed. E-Werte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Di 13.10.2009
Autor: jerifak

Finde die Edit-Funktion nicht, daher so:

...=aE(X|Z) soll es im ersten Schritt natürlich heißen.

Bezug
        
Bezug
Linearität bed. E-Werte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Di 13.10.2009
Autor: felixf

Hallo!

> Beweis von E(aX+bY|Z)=aE(X|Z)+bE(Y|Z)

>

> Bräuchte hier bitte einen Tipp.
>  
> Ich habe mir das Problem erstmal in zweite Schritte
> geteilt, wobei der Erste ganz gut klappt denke ich:
>  
> [mm]E(aX|Z)=\integral{ax*f_{X|Z}(x|z)dx}=a\integral{x*f_{X|Z}(x|z)dx}=aE(X|Z).[/mm]

Hier hast du schon ein Problem: eigentlich sollte da ja $E(aX|Z) = [mm] \int [/mm] t * [mm] f_{aX|Z}(t|z) [/mm] dt$ oder sowas stehen. (Die Variable $t$ als $ax$ zu bezeichnen ist etwas ungeschickt, da $ax$ anders interpretiert wird.) Da musst du jetzt das $a$ rausbekommen.

> Bleibt E(X+Y|Z)=E(X|Z)+E(Y|Z) zu zeigen.
>  Da X+Y ja einfach eine neue Zufallsvariable ist:
>  
> [mm]E(X+Y|Z)=\integral{(x+y)f_{(X+Y)|Z} ((x+y)|z) d(x+y)}[/mm] =
> [mm]\integral{x f_{(X+Y)|Z} ((x+y)|z) d(x+y)} +\integral{y f_{(X+Y)|Z} ((x+y)|z) d(x+y)}[/mm]

Hier wird das ganze auch nicht besser; die Integrationsvariable als $x + y$ zu bezeichnen ist keine gute Idee. Vor allem dann ploetzlich das auseinanderzuziehen.

Ich denke du musst mit einer anderen Darstellung des bedingten Erwartungswertes arbeiten. Da ich nicht weiss wie ihr das in der Vorlesung oder Uebung definiert habt, kann ich dir da nicht wirklich weiterhelfen.

LG Felix


Bezug
        
Bezug
Linearität bed. E-Werte: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 17.10.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de