www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Linearkombination Beweis
Linearkombination Beweis < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearkombination Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Mo 27.10.2008
Autor: kami.

Aufgabe
Für v € R² mit v!=0 betrachten wir die Gerade:

[mm] L_v [/mm] : = { x € R²| es existiert ein µ € R : x = µv }


Es sei nun v,w € R² \ {0}, dann beweise man:
...
(d) Wenn [mm] L_v [/mm] geschnitten [mm] L_w [/mm] = {0} gilt, so lässt sich jedes x € R² aufeindeutige Weise als "Linearkombination" von v und w, das heißt in der Form:

x = ß* v + µ *w   mit ß, µ € R darstellen

Ich habe mir diesen Sachverhalt geometrisch aufgezeichnet und verstehe es voll und ganz. Ich sehe aber irgendwie nicht den Weg wie ich es mathematisch beweisen kann. Zumal ich zusätzlich nicht ganz verstehe warum nicht schon ein einziger Vektor v bzw. w ausreicht jeden Vektor x darzustellen, z.b. durch so etwas wie x = ( [mm] ß*x_1 [/mm] , µ * [mm] x_2) [/mm]

Ein Ansatz oder etwas ähnliches würde mir sehr weiterhelfen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Linearkombination Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Mo 27.10.2008
Autor: angela.h.b.


> Für v € R² mit v!=0 betrachten wir die Gerade:
>  
> [mm]L_v[/mm] : = { x € R²| es existiert ein µ € R : x = µv }
>  
>
> Es sei nun v,w € R² \ {0}, dann beweise man:
>  ...
>  (d) Wenn [mm]L_v[/mm] geschnitten [mm]L_w[/mm] = {0} gilt, so lässt sich
> jedes x € R² aufeindeutige Weise als "Linearkombination"
> von v und w, das heißt in der Form:
>  
> x = ß* v + µ *w   mit ß, µ € R darstellen

Hallo,

überleg Dir mal wie Du zeigen kannst, daß v und w linear unabhängig sind.

So könntest Du beginnen: sei av+bw=0.

Nun überleg' Dir, warum [mm] a\not=0 [/mm] ein Widerspruch zu [mm]L_v[/mm] geschnitten [mm]L_w[/mm] = {0} ist.

Füt b genauso.

Tja, und zwei linear unabhängige Vektoren im [mm] \IR^2 [/mm] bilden eine ....

>   Zumal
> ich zusätzlich nicht ganz verstehe warum nicht schon ein
> einziger Vektor v bzw. w ausreicht jeden Vektor x
> darzustellen, z.b. durch so etwas wie x = ( [mm]ß*x_1[/mm] , µ *
> [mm]x_2)[/mm]

>

Für sowas brauchst Du zwei Vektoren, von denen der eine mit [mm] \beta [/mm] und der andere mit [mm] \mu [/mm] multipliziert wird: x = ( [mm]ß*x_1[/mm] , µ *

> [mm]x_2)[/mm][mm] =\beta([/mm]  [mm]x_1[/mm] , 0) + [mm] \mu [/mm] (0, [mm] x_2) [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de