www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Linearkombination von Vektoren
Linearkombination von Vektoren < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearkombination von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 So 29.04.2012
Autor: PhysikGnom

Aufgabe
Sei [mm] \vec{d} [/mm] die Linearkombination dreier Vektoren [mm] \vec{a}, \vec{b}, \vec{c} [/mm] :

[mm] \vec{d} [/mm] = [mm] \lambda_{1}\vec{a}+\lambda_{2}\vec{b}+\lambda_{3}\vec{c} [/mm]

Schreiben Sie ohne Rechnung die Ausdrücke für [mm] \lambda_{2} [/mm] und [mm] \lambda_{3} [/mm] hin. Welche Bedingung müssen die drei Vektoren [mm] \vec{a}, \vec{b}, \vec{c} [/mm]

Zeigen Sie dass [mm] \lambda_{1} [/mm] gegeben ist durch :

[mm] \lambda_{1} [/mm] = [mm] \vec{d}*(\vec{b} [/mm] X [mm] \vec{c})/(\vec{a}* (\vec{b} [/mm] X [mm] \vec{c}) [/mm]

Schreiben Sie ohne Rechnung die Ausdrücke für [mm] \lambda_{2} [/mm] und [mm] \lambda_{3} [/mm] hin. Welche Bedingung müssen die drei Vektoren [mm] \vec{a}, \vec{b}, \vec{c} [/mm] erfüllen, damit die Aufgabe lösbar und die Lösung eindeutig ist?

Hoi,

Also wenn ich das ausrechne komm ich auf:

[mm] \lambda_{1} [/mm] = [mm] \bruch{d_{1}b_{2}c_{3}-c_{2}b_{3}+d_{2}b_{1}c_{3}-c_{1}b_{3}+d_{3}b_{1}c_{2}-c_{1}b_{2} }{a_{1}b_{2}c_{3}-c_{2}b_{3}+a_{2}b_{1}c_{3}-c_{1}b_{3}+a_{3}b_{1}c_{2}-c_{1}b_{2} } [/mm]

Könnte ich das jetzt in die andere Gleichung einsetzen?? Und wie komme ich auf einen Ausdruck für die anderen lambdas?? Ganz normales Umformen bringt wenig...

gruß

        
Bezug
Linearkombination von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 So 29.04.2012
Autor: abakus


> Sei [mm]\vec{d}[/mm] die Linearkombination dreier Vektoren [mm]\vec{a}, \vec{b}, \vec{c}[/mm]
> :
>  
> [mm]\vec{d}[/mm] =
> [mm]\lambda_{1}\vec{a}+\lambda_{2}\vec{b}+\lambda_{3}\vec{c}[/mm]
>  
> Schreiben Sie ohne Rechnung die Ausdrücke für [mm]\lambda_{2}[/mm]
> und [mm]\lambda_{3}[/mm] hin. Welche Bedingung müssen die drei
> Vektoren [mm]\vec{a}, \vec{b}, \vec{c}[/mm]
>  
> Zeigen Sie dass [mm]\lambda_{1}[/mm] gegeben ist durch :
>  
> [mm]\lambda_{1}[/mm] = [mm]\vec{d}*(\vec{b}[/mm] X [mm]\vec{c})/(\vec{a}* (\vec{b}[/mm]
> X [mm]\vec{c})[/mm]
>  
> Schreiben Sie ohne Rechnung die Ausdrücke für [mm]\lambda_{2}[/mm]
> und [mm]\lambda_{3}[/mm] hin. Welche Bedingung müssen die drei
> Vektoren [mm]\vec{a}, \vec{b}, \vec{c}[/mm] erfüllen, damit die
> Aufgabe lösbar und die Lösung eindeutig ist?
>  Hoi,
>  
> Also wenn ich das ausrechne komm ich auf:
>  
> [mm]\lambda_{1}[/mm] =
> [mm]\bruch{d_{1}b_{2}c_{3}-c_{2}b_{3}+d_{2}b_{1}c_{3}-c_{1}b_{3}+d_{3}b_{1}c_{2}-c_{1}b_{2} }{a_{1}b_{2}c_{3}-c_{2}b_{3}+a_{2}b_{1}c_{3}-c_{1}b_{3}+a_{3}b_{1}c_{2}-c_{1}b_{2} }[/mm]
>  
> Könnte ich das jetzt in die andere Gleichung einsetzen??
> Und wie komme ich auf einen Ausdruck für die anderen
> lambdas?? Ganz normales Umformen bringt wenig...
>  
> gruß

Hallo,
du musst doch nur ein paar Buchstaben vertauschen. Das gegebene [mm] $\lambda_1$ [/mm] ist der Faktor vor dem Vektor a, und das gesuchte [mm] $\lambda_2$ [/mm] ist der Faktor von dem Vektor b.
Du musst also lediglich alle vorkommenden a's und b's aus der Formel von [mm] $\lambda_1$ [/mm] austauschen.
Gruß Abakus


Bezug
                
Bezug
Linearkombination von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 So 29.04.2012
Autor: PhysikGnom

Und dann für c? Dann hätte ich unter dem Bruch c kreuz c was ja null ergibt??

Bezug
                        
Bezug
Linearkombination von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 So 29.04.2012
Autor: MathePower

Hallo PhysikGnom,

> Und dann für c? Dann hätte ich unter dem Bruch c kreuz c
> was ja null ergibt??


Hier musst Du Vektor a mit Vektor c ersetzen und umgekehrt.


Gruss
MathePower

Bezug
                                
Bezug
Linearkombination von Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 So 29.04.2012
Autor: PhysikGnom

Achso, oh man ^^
Naja, dank für eure Hilfe !! :)

Schönen Abend noch !
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de