www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Linerare Gleichung
Linerare Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linerare Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 So 26.12.2004
Autor: Juster

Hallo,

ich habe diese Aufgabe und weiß nicht wie ich das b wegbekommen soll, denn die Lösung soll [mm] (a)\not=b [/mm] sein.

(a-x)(x-b)=a²-x²


(a-x)(x-b)=(a-x)(a+x)     :(a-x)

(x-b)=(a+x)

x-x=a+b

oder o= x(a-b)

irgendwie komme ich hier nicht weiter.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gruß Micha


        
Bezug
Linerare Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 So 26.12.2004
Autor: Fugre


> Hallo,
>  
> ich habe diese Aufgabe und weiß nicht wie ich das b
> wegbekommen soll, denn die Lösung soll [mm](a)\not=b[/mm] sein.
>  
> (a-x)(x-b)=a²-x²
>  
>
> (a-x)(x-b)=(a-x)(a+x)     :(a-x)
>  
> (x-b)=(a+x)
>  
> x-x=a+b
>  
> oder o= x(a-b)
>  
> irgendwie komme ich hier nicht weiter.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Gruß Micha
>  
>  

Hallo Micha,

du hast die Aufgabe eigentlich ganz gut bearbeitet, warst aber an einer Stelle etwas unachtsam.
Denn du hast durch (a-x) dividiert und das kann ja auch 0 sein, deshalb hast du eine Lösung geschlabbert ;-) .
Als Tipp: Teile möglichst nicht durch Unbekannte die 0 sein könnten oder Terme die 0 sein könnten.

Bei dieser Aufgabe kannst du die Division mit einem kleinen Trick umgehen.
Du willst wissen wann (a-x)(x-b)=(a-x)(a+x) ist, dazu guckst du wann die Differenz 0 ist, bringst also alles auf eine Seite,
sodass auf der anderen nur noch die Null steht.
Hier bedeutet dies:
$(a-x)(x-b)-(a-x)(a+x)=0
(a-x)((x-b)-(x+a))=0$

Nun die Überlegung: Ein Produkt ist 0, wenn einer der Faktoren 0 ist.
Und wir sehen es gibt 2 Möglichkeiten:
(1) x=a
(2) a=-b

Da die Zweite jedoch ausgeschlossen wurde, ist x=a die Lösung.

Die Klammer soll doch Betragsstriche andeuten oder?

Ich hoffe, dass ich dir helfen konnte. Sollte etwas unklar sein, so frag bitte nach.

Liebe Grüße
Fugre


Bezug
                
Bezug
Linerare Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 So 26.12.2004
Autor: e.kandrai

Sollten die Klammern in der Aufgabenstellung doch keine Betragsstriche sein, dann wäre dieser Fall [mm]a=-b[/mm] natürlich auch eine Lösung, sogar eine von x unabhängige.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de