www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Liouville
Liouville < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Liouville: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Di 16.06.2015
Autor: Trikolon

Aufgabe
Seien f,g: [mm] \IC [/mm] --> [mm] \IC [/mm] holomorphe Funktionen mit f(z)=g(1/z) für alle z [mm] \in \IC*. [/mm] Zeige, dass f und g konstant sind.

Hallo,

sonderlich viel ist mir zu obiger Aufgabe nicht eingefallen. Ich schätze mal stark dass man den Satz von Liouville anwenden muss. d.h. es wäre zu zeigen, dass f und g ganze Funktionen sind, die beschrankt sind. Dass f ganz ist, ist klar. Aber der Rest...

        
Bezug
Liouville: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Di 16.06.2015
Autor: fred97


> Seien f,g: [mm]\IC[/mm] --> [mm]\IC[/mm] holomorphe Funktionen mit
> f(z)=g(1/z) für alle z [mm]\in \IC*.[/mm]


Da steht wohl [mm] $\IC \setminus \{0\}$ [/mm]



> Zeige, dass f und g
> konstant sind.
>  Hallo,
>  
> sonderlich viel ist mir zu obiger Aufgabe nicht
> eingefallen. Ich schätze mal stark dass man den Satz von
> Liouville anwenden muss. d.h. es wäre zu zeigen, dass f
> und g ganze Funktionen sind, die beschrankt sind. Dass f
> ganz ist, ist klar. Aber der Rest...


g ist nach Vor. auch eine ganze Funktion !  Von dieser sei

  [mm] g(z)=\summe_{n=0}^{\infty}a_nz^n [/mm]

die Potenzreihenentwicklung auf [mm] \IC. [/mm] Für z [mm] \ne [/mm] 0 ist dann

   [mm] $f(z)=g(1/z)=\summe_{n=0}^{\infty} \bruch{a_n}{z^n}=a_0+a_1/z+a_2/z^2+...$. [/mm]

Da f ganz ist muss aber nun gelten: [mm] a_1=a_2=... [/mm] =  ??

Siehst Du nun, dass f und g konstant sind ?

FRED


Bezug
                
Bezug
Liouville: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Di 16.06.2015
Autor: Trikolon

  Dann muss gelten [mm] a_1=a_2=..=0 [/mm]

D.h. [mm] f(z)=g(1/z)=a_0, [/mm] also konstant. Da hat man aber doch jetzt den Satz von Liouville gar nicht gebraucht, oder? Unser Donzent meinte, man solle den dort anwenden..



Bezug
                        
Bezug
Liouville: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Di 16.06.2015
Autor: fred97


>   Dann muss gelten [mm]a_1=a_2=..=0[/mm]

Ja


>  
> D.h. [mm]f(z)=g(1/z)=a_0,[/mm] also konstant. Da hat man aber doch
> jetzt den Satz von Liouville gar nicht gebraucht, oder?

Nö.


> Unser Donzent meinte, man solle den dort anwenden..

Kann man auch mit Liouville machen:

Es ist [mm] \limes_{|z| \rightarrow\infty}|f(z)|=\limes_{|z| \rightarrow\infty}|g(1/z)|=|g(0)|. [/mm]

Damit ex. ein r>0 mit

  (1) $|f(z)| [mm] \le [/mm] |g(0)|+1$  für alle z mit |z|>r.

Die Menge [mm] K:=\{z: |z| \le r\} [/mm] ist kompakt, somit:

   (2) f ist auf K beschränkt.

Aus (1) und (2): f ist auf [mm] \IC [/mm] beschränkt.

FRED

>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de