www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Lipschitz-Stetigkeit
Lipschitz-Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitz-Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Fr 24.04.2009
Autor: Pille456

Aufgabe
Ist f: [-1,1] [mm] \to \IR, [/mm] x [mm] \to \bruch{x^2+1}{x^2-2} [/mm] Lipschitz-Stetig?

Hio,
Frage ist ja oben. Um Lipschitz-Setigkeit zu zeigen muss ja folgendes gelten:
|f(x)=f(y)| [mm] \le [/mm] L*|x-y| für alle x,y [mm] \in [/mm] [-1,1] mit L [mm] \ge [/mm] 0.
Also habe ich das erstmal eingesetzt und versucht so auszuklammern, dass ich ein |x-y| isoliert hatte:
[mm] |\bruch{x^2+1}{x^2-2} [/mm] - [mm] \bruch{y^2+1}{y^2-2}| [/mm] = ... (ich übernehme keine Haftung für Richtigkeit :) ) = [mm] |\bruch{3(x+y)}{(x^2-2)(y^2-2)}|*|x-y|, [/mm] also L = [mm] |\bruch{3(x+y)}{(x^2-2)(y^2-2)}| [/mm]
Nun muss ich nur noch irgendwie herausfinden welchen Wert dieser Term maximal annimmt. Dazu könnte ich einmal den Grenzwert heranziehen (nur wie mit x&y und wogegen?) oder ich berechne den Hochpunkt dieser Funktion (aber wieder, wie mit x&y?), damit ich dann eine Konstante L finden kann die größer ist(weil L ja bisher von x und y abhängig ist, L aber für alle x,y gelten muss)
Wenn diese Zahl nun [mm] +\infty [/mm] so kann ich natürlich keine solche Konstante L finden(d.h. die Funktion ist nicht Lipschitz-Setig), in JEDEM anderen Fall kann ich aber eine Konstante L finden und die Funktion ist demnach Lipschitz-Stetig oder nicht?

        
Bezug
Lipschitz-Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Fr 24.04.2009
Autor: steppenhahn

Hallo!

Es geht sicher eleganter als der folgende Lösungsweg, aber einerlei:
Zunächst erhält man links

[mm] $\left|\bruch{3*(y^{2}-x^{2})}{(x^{2}-2)*(y^{2}-2)}\right| [/mm] = [mm] \left|\bruch{3*(y-x)*(x+y)}{(x^{2}-2)*(y^{2}-2)}\right|$ [/mm]

also bleibt zu zeigen dass

[mm] $\left|\bruch{3*(x+y)}{(x^{2}-2)*(y^{2}-2)}\right| \le [/mm] L$

Wegen [mm] $x,y\in[-1,1]$ [/mm] bewegen sich beide Faktoren im Nenner im Intervall [-2,-1], es sind also keine "Sprünge" bei der Funktio zu erwarten. Das x+y im Zähler bewegt sich im Intervall [-2,2].

Nun nimm die Werte aus den Intervallen für die einzelnen Teile heraus, womit der Bruch den höchsten Wert annimmt.
Man kommt auf

[mm] \bruch{3*2}{1*1} [/mm] = 6

für L.

Viele Grüße, Stefan.

Bezug
        
Bezug
Lipschitz-Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Fr 24.04.2009
Autor: pelzig

Es gilt auch: differenzierbare Funktionen sind Lipschitzstetig genau dann, wenn ihre Ableitung beschränkt ist.

Gruß, Robert

Bezug
                
Bezug
Lipschitz-Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Fr 24.04.2009
Autor: Pille456

Hm ja das Kriterium habe ich schon oft gelesen, denke ich kann es auch gut anwenden, aber wir kommen nächste Woche wohl erst zu Ableitungen und co. also müsste es dafür noch einen anderen Weg geben oder nicht?

Bezug
                        
Bezug
Lipschitz-Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Fr 24.04.2009
Autor: Gonozal_IX

Hiho,

Steppenhahn hat dir doch beantwortet, wie es ohne Ableiten geht.

MfG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de