www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Lipschitz-stetigkeit prüfen
Lipschitz-stetigkeit prüfen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitz-stetigkeit prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Do 11.11.2010
Autor: gerani

Aufgabe
Man zeige (mit Angabe der Lipschitzkonstanten) oder wiederlege, dass

[mm] f(x,y)=\bruch{xy}{1+x^2+y^2} [/mm]
wobei [mm] x^2+y^2 \le [/mm] 4
Lipschitz-stetig ist.

Hallo allerseits,

ich hab schon den ganzen Tag an dieser Aufgabe herumprobiert aber ich komm leider auf kein Ergebnis. Ich würde intuitiv sagen, dass sie Lipschitz-stetig ist, das ist aber nur geraten. Ich hab ein paar Umformungen gemacht, und bin irgendwann auf

|f(x,y)-f(a,b)| [mm] \le [/mm] 5|xy-ab|

gekommen. Das sieht schon ganz nett aus, aber ich komm nicht weiter.

Hat jemand eine Idee?

Viele Grüße,

gerani :)

PS: Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: (aber leider keine Antwort gekriegt)

http://www.matheplanet.com/

        
Bezug
Lipschitz-stetigkeit prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Fr 12.11.2010
Autor: fred97


> Man zeige (mit Angabe der Lipschitzkonstanten) oder
> wiederlege, dass
>
> [mm]f(x,y)=\bruch{xy}{1+x^2+y^2}[/mm]
>  wobei [mm]x^2+y^2 \le[/mm] 4
>  Lipschitz-stetig ist.
>  Hallo allerseits,
>
> ich hab schon den ganzen Tag an dieser Aufgabe
> herumprobiert aber ich komm leider auf kein Ergebnis. Ich
> würde intuitiv sagen, dass sie Lipschitz-stetig ist, das
> ist aber nur geraten. Ich hab ein paar Umformungen gemacht,
> und bin irgendwann auf
>
> |f(x,y)-f(a,b)| [mm]\le[/mm] 5|xy-ab|


Das bringt Dir doch nichts !  


Du sollst entscheiden, ob es ein L [mm] \ge [/mm] 0 gibt mit:

  $|f(x,y)-f(a,b)| [mm] \le [/mm] L* ||(x,y)-(a,b)||$  für alle (x,y) und (a,b) mit $ [mm] x^2+y^2 \le [/mm] $ 4 , $ [mm] a^2+b^2 \le [/mm] $ 4


FRED

>  
> gekommen. Das sieht schon ganz nett aus, aber ich komm
> nicht weiter.
>
> Hat jemand eine Idee?
>  
> Viele Grüße,
>
> gerani :)
>  
> PS: Ich habe diese Frage auch in folgenden Foren auf
> anderen Internetseiten gestellt: (aber leider keine Antwort
> gekriegt)
>  
> http://www.matheplanet.com/


Bezug
                
Bezug
Lipschitz-stetigkeit prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Fr 12.11.2010
Autor: gerani

Hi Fred,

Die Definition von Lipschitzstetigkeit kann ich mittlerweile sehr gut, danke :)

ich kam dann doch damit weiter, dank eines Tipps in einem anderen Forum. Man muss einfach die Null addieren:

5|xy-ab| = 5|xy-ay+ay-ab| [mm] \le [/mm] 5(|xy-ay|+|ay-ab|)=5(|y||x-a|+|a||y-b|) [mm] \le [/mm] 5(2|x-a|+2|y-b|)
= 10 [mm] \parallel \vektor{x \\ y}-\vektor{a \\ b} \parallel_1 [/mm]

Grüße,

gerani

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de