www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Lösbarkeit von Gleichungsys.
Lösbarkeit von Gleichungsys. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösbarkeit von Gleichungsys.: Lösbarkeit für singuläres A
Status: (Frage) beantwortet Status 
Datum: 11:12 Do 20.04.2006
Autor: marthasmith

Aufgabe
$Ax=f$
mit einer singulären Matrix A, dann gilt, dass die Gleichung dann lösbar ist, wenn
$f^Tw = 0 [mm] \forall [/mm] w: A^Tw=0$

Hallihallo,

nun bin ich doch ein wenig unsicher geworden und würde gerne wissen, ob meine Gedanken richtig sind?

Dieses System ist nur dann lösbar, wenn f in dem von A aufgespanntem Raum ist und das ist so, wenn alle Vektoren, die auf f senkrecht stehen auch auch A senkrecht stehen?

Gruß

Alice

        
Bezug
Lösbarkeit von Gleichungsys.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Mo 24.04.2006
Autor: felixf

Hallo Alice!

> [mm]Ax=f[/mm]
>  mit einer singulären Matrix A, dann gilt, dass die
> Gleichung dann lösbar ist, wenn
> [mm]f^Tw = 0 \forall w: A^Tw=0[/mm]

Meinst du mit der letzten Formel folgendes? [mm] $\forall [/mm] w : [mm] (A^T [/mm] w = 0 [mm] \Rightarrow f^T [/mm] w = 0)$?

> nun bin ich doch ein wenig unsicher geworden und würde
> gerne wissen, ob meine Gedanken richtig sind?
>  
> Dieses System ist nur dann lösbar, wenn f in dem von A
> aufgespanntem Raum ist und das ist so, wenn alle Vektoren,
> die auf f senkrecht stehen auch auch A senkrecht stehen?

Das ist eine Umformulierung der Behauptung...

Wenn du das beweisen willst, geh doch wie folgt vor: Es gibt eine invertierbare Matrix $B$ so, dass $B A$ in Zeilenstufenform ist. Sei $r$ der Rang von $A$; dann ist $r$ gerade die Anzahl der Nullzeilen von $A$.

Nun ist $A x = f$ genau dann loesbar, wenn $(B A) x = B f$ loesbar ist (siehst du warum?). Und $(B A) x = (B f)$ ist genau dann loesbar, wenn die letzten $r$ Komponenten von $B f$ gerade $0$ sind.

Jetzt ueberleg dir mal, was $(B [mm] A)^T [/mm] w = 0$ genau fuer den Vektor $w$ bedeutet. Kommst du damit weiter?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de