www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Lösen Ungleichung
Lösen Ungleichung < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen Ungleichung: Supremum, Infimum
Status: (Frage) beantwortet Status 
Datum: 12:08 Sa 13.03.2010
Autor: M84

Also gegeben ist die folgende Menge:

x [mm] $\in$ [/mm] R | x [mm] $\not=$ [/mm] 1, [mm] $\frac{1}{1-x}$ [/mm] < 1+2x

Ich soll diese Menge auf Infimum, Minimum, Supremum, Maximum untersuchen.
Habe eine Fallunterscheidung gemacht falls 1-x>0 oder 1-x< 0 ist. Für beide Fälle nach x aufgelöst und kam dann zur Lösungsmenge: [mm] (0,$\frac{1}{2}$) $\cup$ [/mm] (1, [mm] $\infty$). [/mm]

Infimum müsste also 0 sein und Supremum [mm] $\infty$ [/mm]

Als Lösung (Leider ohne Lösungsweg) ist allerdings angegeben, dass die Lösungsmenge das Intervall [mm] ($\frac{1}{2}$, [/mm] 1) sei. Und somit das Infimum [mm] $\frac{1}{2}$ [/mm] und das Supremum 1.

Da ich allerdings auch grafisch auf meine Lösung komme, würd ich gern wissen ob ich da irgendwas grundsätzlich nicht verstanden habe, oder die Musterlösung einfach falsch ist..

Danke schonmal

mfg Markus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Lösen Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Sa 13.03.2010
Autor: angela.h.b.


> Also gegeben ist die folgende Menge:
>  
> x [mm]\in[/mm] R | x [mm]\not=[/mm] 1, [mm]\frac{1}{1-x}[/mm] < 1+2x
>  
> Ich soll diese Menge auf Infimum, Minimum, Supremum,
> Maximum untersuchen.
>  Habe eine Fallunterscheidung gemacht falls 1-x>0 oder 1-x<
> 0 ist. Für beide Fälle nach x aufgelöst und kam dann zur
> Lösungsmenge: (0,[mm]\frac{1}{2}[/mm]) [mm]\cup[/mm] (1, [mm]\infty[/mm]).

Hallo,

Deine Lösung  ist richtig.


>  
> Infimum müsste also 0 sein

Ja.


> und Supremum [mm]\infty[/mm]

Nein, denn die Menge hat keine obere Schranke.
[mm] (\infty [/mm] ist doch keine reelle Zahl.)

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de