www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Lösen Von Extremwertaufgaben
Lösen Von Extremwertaufgaben < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen Von Extremwertaufgaben: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:20 Mo 01.05.2006
Autor: Guli

Aufgabe
In das Paraboloidsegment, das durch Drehung der Parabel y²= 2px um die x- Achse zwischen x= 0 und x=4 p entsteht, ist ein Zylinder größten Volumens einzuschreiben

Hallo an Alle im Mathe- Raum!!
Ich bräuchte eure Hilfe!!

Ich hab schon oft Extremwertaufgaben gelöst, aber bei diesem Beispiel habe ich völlig versagt. Es fängt schon bei der Aufgabenstellung an! Paraboloidsegment?? Keine Ahnung
Ich verstehe leider nicht einmal die Angabe  ;(

Ich hoffe, dass mir jemand weiterhelfen kann.
Schon mal DANKE im voraus!!

        
Bezug
Lösen Von Extremwertaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Mo 01.05.2006
Autor: Huga

Hallo,

deine Gleichung beschreibt eine Parabel, die die x-Achse als Symmetrieachse hat. Wenn man die Parabel um die Achse rotieren lässt, entsteht ein Paraboloid. Schneidet man ein Stück davon ab, hat man ein Paraboloidsegment.

[Dateianhang nicht öffentlich]

In der Abbildung siehst du, wie ein Rechteck einzubeschreiben ist, sodass bei Rotation ein Zylinder entsteht. Für das Volumen ergibt sich dann ein quadratischer Term.

Reicht das?

Gruß
Huga

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Lösen Von Extremwertaufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Mo 01.05.2006
Autor: Guli

Hallo Huga!!

Danke für deine Hilfe!! Aber das ist leider noch nicht ausreichend!! :(
Ich weiß nicht wie ich anfangen soll??  Bzw was ich genau machen muss!!


Bezug
                        
Bezug
Lösen Von Extremwertaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Di 02.05.2006
Autor: Sigrid

Hallo Huga,

Versuch dir, den Zylinder, der durch Drehung des Rechtecks, das Huga gezeichnet hat, vorzustellen.
Die Rechteckseite, parallel zur x-Achse, ist die Höhe des Zylinders. Die andere seite ist der Durchmesser des Zylinders. Wenn du jetzt noch berücksichtigst, dass die rechte Seite durch x=4 vorgegeben ist und die linke veränderlich, also x=a, ist, kommst du an die Nebenbedingungen. Die Höhe des Zylinders ist h=4-a. Versuche jetzt auch den Radius zu bestimmen.

Gruß
Sigrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de