www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Lösen der Gleichung
Lösen der Gleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen der Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Mo 29.01.2007
Autor: Mark007

Hi, Wie rechne ich diese Auffgabe: $ [mm] 3^{x+2}=3^{2x} [/mm] $ mit dem Logarithmus,also wie löse ich nach x-auf? und wie berechne ich die Aufgabe?: $ [mm] 2\cdot{}0,25^{x}=4^{x}? [/mm] $
Also wie macht man das, wenn zwei xe als exponent auf den beiden Seiten des Gleichheitszeichen sind? Also  

Wie rechnet man [mm] \bruch{4^x}{2} [/mm]

Danke für die Antwort

        
Bezug
Lösen der Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Mo 29.01.2007
Autor: angela.h.b.


> [mm]3^{x+2}=3^{2x}[/mm]

Hallo,

logarithmieren:

<==> [mm] log(3^{x+2})=log(3^{2x}) [/mm]
<==> (x+2) log3=(2x)log3    :log3    [mm] (\not=0) [/mm]
<==> x+2=2x
...


>[mm]2\cdot{}0,25^{x}=4^{x}?[/mm]

Da gibt's mehrere Moglichkeiten.

[mm] 2\cdot{}0,25^{x}=4^{x} [/mm]

<==>2* [mm] \bruch{1}{4^x}=4^x [/mm]

<==> [mm] 2=4^x*4^x=4^{x+x}=4^{2x}=(2^2)^{2x}=2^{4x} [/mm]
<==> [mm] 1=\bruch{2^4x}{2^1}=2^{4x-1} [/mm]
logarithmieren
<==> [mm] \underbrace{log1}_{=0}=log(2^{4x-1})=(4x-1)log2 [/mm]
<==> 0=4x-1



> Wie rechnet man [mm]\bruch{4^x}{2}[/mm]

[mm] =\bruch{(2^2)^x}{2^1}=\bruch{2^{2x}}{2^1}=2^{2x-1} [/mm]

Gruß v. Angela

Bezug
                
Bezug
Lösen der Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Mo 29.01.2007
Autor: Mark007

Hallo, aber wie rechnet man denn: [mm] \bruch{1}{16}*4^{0,5x-2}=2^{3x} [/mm] ?
Ich habe folgendes gerechnet: [mm] 4^{0,5x-2}=2^{3x-4} [/mm] , denn  [mm] \bruch{1}{16} [/mm] ist ja das selbe wie [mm] 2^{-4} [/mm]

[mm] (2^2)^{0,5x-2}= 2^{3x-4} [/mm]
Aber wie solls weitergehen? Ist das überhaupt richtig? Wie rechne ich: [mm] \bruch{2}{3}^{x-1} [/mm] = [mm] \bruch{8}{27}^{x+2} [/mm] ?
Danke

Bezug
                        
Bezug
Lösen der Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:48 Mo 29.01.2007
Autor: angela.h.b.


> Hallo, aber wie rechnet man denn:
> [mm]\bruch{1}{16}*4^{0,5x-2}=2^{3x}[/mm] ?
>  Ich habe folgendes gerechnet: [mm]4^{0,5x-2}=2^{3x-4}[/mm] , denn  
> [mm]\bruch{1}{16}[/mm] ist ja das selbe wie [mm]2^{-4}[/mm]

Gar nicht so übel!
Ein Fehler steckt drin:
um [mm] \bruch{1}{16} [/mm] "wegzukriegen" multipliziert man auf beiden Seiten mit [mm] 16=2^4, [/mm] so daß sich ergibt


[mm](2^2)^{0,5x-2}= 2^{3x *+ 4}[/mm]

> Aber wie solls weitergehen? Ist das überhaupt richtig? Wie
> rechne ich: [mm]\bruch{2}{3}^{x-1}[/mm] = [mm]\bruch{8}{27}^{x+2}[/mm] ?

Du meinst: [mm](\bruch{2}{3})^{x-1}[/mm] = [mm](\bruch{8}{27})^{x+2}[/mm], oder?

Da guckst Du gaaaanz scharf drauf, stellst fest, daß die Nenner Potenzen von 3 sind und die Zähler von 2. Nun bringst Du auf die eine Seite 2er-Potenzen und auf die andere Seite 3er-Potenzen. (Wie in den Duschen in der Jugendherberge.)

[mm] (\bruch{2}{3})^{x-1} [/mm] = [mm] (\bruch{8}{27})^{x+2} [/mm]

<==> [mm] (\bruch{2^{x-1}}{3^{x-1}}) [/mm] = [mm] (\bruch{8^{x+2}}{27^{x+2}}) [/mm]

<==> [mm] \bruch{27^{x+2}}{{3}^{x-1}}=\bruch{8^{x+2}}{2^{x-1}} [/mm]

[mm] <==>\bruch{(3^3)^{x+2}}{{3}^{x-1}}=\bruch{(2^3)^{x+2}}{2^{x-1}} [/mm]

<==> [mm] 3^{2x+7}=2^{2x+7} [/mm]

>==> [mm] 1=\bruch{2^{2x+7}}{3^{2x+7}}=(\bruch{2}{3})^{2x+7} [/mm]

Nun wieder logarithmieren.

Der Ehrlichkeit halber muß man sagen: Deine Aufgaben sind  so gemacht, daß siie gut funktionieren...

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de