www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Lösen der Gleichung
Lösen der Gleichung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen der Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 So 09.06.2013
Autor: sMaus

Aufgabe
Es sei [mm] A=\pmat{ 5 & 5 & 2 & 3 & 4 & 0 \\ 1 & -1 & 1 & 2 & 3 & 1 \\ 7 & 3 & 4 & 7 & 10 & 2 }. [/mm] Bestimmen Sie die Dimension des Lösungsraumes U:= {x Element aus [mm] R^6 [/mm] | A x = [mm] \vec0} [/mm] und lösen Sie das homogene Gleichungssystem A x = [mm] \vec0. [/mm]

Für die Dimension erhalte ich 4. Ist es richtig, wenn ich behaupte: x= (1, -1,3 -2, 0, -1)? Dabei setze ich einfach beliebig x1= 1 x2=-1 x3= 3 und x4= -2 und erhalte am Ende für x5= 0 und x6= -1... Darf man das denn?

        
Bezug
Lösen der Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 So 09.06.2013
Autor: Diophant

Hallo,

> Es sei

[mm] A=\pmat{ 5 & 5 & 2 & 3 & 4 & 0 \\ 1 & -1 & 1 & 2 & 3 & 1 \\ 7 & 3 & 4 & 7 & 10 & 2 } [/mm]

> Bestimmen Sie die Dimension des Lösungsraumes ...
> Für die Dimension erhalte ich 4.

Das ist aber nicht richtig, rechne nochmal nach.

> Ist es richtig, wenn ich
> behaupte: x= (1, -1,3 -2, 0, -1)? Dabei setze ich einfach
> beliebig x1= 1 x2=-1 x3= 3 und x4= -2 und erhalte am Ende
> für x5= 0 und x6= -1... Darf man das denn?

Nein, das darf man nicht. Die Lösungsmenge ist in Abhängigkeit von Parametern anzugeben, und das müssen exakt so viele sein wie die Anzahl der Dimensionen des Lösungsraumes.


Gruß, Diophant

Bezug
                
Bezug
Lösen der Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 So 09.06.2013
Autor: sMaus

die Formel lautet dim (L) = dim (V) - rg (A) .
dim (v)= 6
rg (A)= 2 , da : [mm] \pmat{ 5 & 5 & 2 & 3 & 4 & 0 \\ 0 & -2 & 0,6 & 1,4 & 2,2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 } [/mm]

somit ist doch dim (L) = 6-2 =4

Danach setze ich für x1= [mm] 1\lambda [/mm] x2= [mm] -1\lambda [/mm] x3= [mm] 3\lambda [/mm]
x4= [mm] -2\lambda [/mm] und erhalte damit x5= [mm] 0\lambda [/mm] und x6= [mm] -1\lambda. [/mm] Daraus folgt x=(1,-1,3,-2,0,-1).

In der Dimensionsrechnung komme ich irgendwie nicht auf mein Fehler drauf.

Bezug
                        
Bezug
Lösen der Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 So 09.06.2013
Autor: Diophant

Hallo,

> die Formel lautet dim (L) = dim (V) - rg (A) .
> dim (v)= 6
> rg (A)= 2 , da : [mm]\pmat{ 5 & 5 & 2 & 3 & 4 & 0 \\ 0 & -2 & 0,6 & 1,4 & 2,2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 }[/mm]

>

> somit ist doch dim (L) = 6-2 =4

So macht das keinen Sinn. Du musst schon deine einzelnen Rechenschritte mit angeben. Wie gesgt: ich erhalte zwei Nullzeilen...

EDIT: sorry, ich hatte mich verrechnet. Dim(U)=4 ist richtig. [ok]

> Danach setze ich für x1= [mm]1\lambda[/mm] x2= [mm]-1\lambda[/mm] x3=
> [mm]3\lambda[/mm]
> x4= [mm]-2\lambda[/mm] und erhalte damit x5= [mm]0\lambda[/mm] und x6=
> [mm]-1\lambda.[/mm] Daraus folgt x=(1,-1,3,-2,0,-1).

>

Es müssten vier unterschiedliche Parameter sein.


Gruß, Diophant

Bezug
                        
Bezug
Lösen der Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 So 09.06.2013
Autor: angela.h.b.


> die Formel lautet dim (L) = dim (V) - rg (A) .
> dim (v)= 6
> rg (A)= 2 , da : [mm]\pmat{ \red{ 5} & 5 & 2 & 3 & 4 & 0 \\ 0 & \red{-2} & 0,6 & 1,4 & 2,2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 }[/mm]

>

> somit ist doch dim (L) = 6-2 =4

Hallo,

mal kochrezeptartig, anzuwenden für alle ähnlichen Gerichte:

die führenden Elemente der Nichtnullzeilen stehen in Spalte 1 und 2.

Daher kann man die 3.,4.,5.,6.Variable frei wählen.

Mit

[mm] x_6:=u [/mm]
[mm] x_5:=t [/mm]
[mm] x_4:=s [/mm]
[mm] x_3:=r [/mm]

erhält man aus Zeile 2

   [mm] -2x_2+0.6x_3+1.4x_4+2.2x_5+x_6=0 [/mm] <==>
[mm] x_2=0.3x_3+0.7x_4+1.1x_5+0.5x_6=0.3r+0.7s+1.1t+0.5u, [/mm]

und aus Zeile 1

    [mm] 5x_1+5x_2+2x_3+3x_4+4x_5=0 [/mm] <==>

[mm] x_1=-x_2-0.4x_3-0.6x_4-0.8x_5=-0.7r-1.3s-1.9t-0.5u [/mm]

Also haben alle Lösungen x die Gestalt

[mm] \vektor{x_1\\\vdots\\x_6}=\vektor{-0.7r-1.3s-1.9t-0.5u\\0.3r+0.7s+1.1t+0.5u\\r\\s\\t\\u}=r*\vektor{-0.7\\0\\1\\0\\0\\0}+s*\vektor{\vdots}+t*\vektor{\vdots}+u*\vektor{\vdots}. [/mm]

Die vier Vektoren sind eine Basis des Lösungsraumes von Ax=0.

(Rechenfehler nicht ausgeschlossen, das Prinzip zählt!)

LG Angela

 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de