www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Lösen einer DGL mit hom. DGL
Lösen einer DGL mit hom. DGL < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen einer DGL mit hom. DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Sa 07.05.2011
Autor: Frankstar

Aufgabe
Lösen Sie folgende DGL:   y'+y=sinx
Die Lösung der homogenen DGL lautet:  [mm] y(x)=c*e^{-x} [/mm]

Ich habe es soweit gerechnet, würde aber gerne um eine Prüfung des Ergebniswegs bitten:


gesucht ist allg. Lösung der DGL

y'+y=sinx

[mm] y_{hom}(x) [/mm] = c [mm] e^{-x} [/mm]

[mm] y_{p}(x) [/mm] = c(x) [mm] e^{-x} [/mm]

nun Einsetzen in DGL

c'(x) [mm] e^{-x} [/mm] + c(x) [mm] e^{-x} [/mm] (-1) + c(x) [mm] e^{-x} [/mm] = sin x

c'(x) [mm] e^{-x} [/mm] = sinx | [mm] e^x [/mm]

c'(x) = sinx [mm] e^x [/mm]

[mm] \integral{dc}=\integral{sinx e^{x} dx} [/mm]

C(X) = - cos x [mm] e^{x} [/mm] +sin x [mm] e^{x} [/mm] + c

[mm] y_{p}(x) [/mm] = c(x) [mm] e^{-x} [/mm]

               = (-cos x [mm] e^{x} [/mm] + sin x [mm] e^{x}) e^{-x} [/mm]

[mm] y_{allg}(x)= y_{hom}(x) [/mm] + [mm] y_{p}(x) [/mm]

= c e^(-x) + (-cos x [mm] e^{x}+ [/mm] sin x [mm] e^{x}) e^{-x} [/mm]

        
Bezug
Lösen einer DGL mit hom. DGL: zusammenfassen
Status: (Antwort) fertig Status 
Datum: 10:23 Sa 07.05.2011
Autor: Loddar

Hallo Frankstar!


Das sieht gut aus. Jedoch kannst Du ganz am Ende noch die Klammer zusammenfassen, da sich dort jeweils ergibt: [mm] $e^x*e^{-x} [/mm] \ = \ 1$ .


Gruß
Loddar


Bezug
        
Bezug
Lösen einer DGL mit hom. DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Sa 07.05.2011
Autor: Frankstar

muss das C von der partikulären eigentlich mit in die Klammer bei der allgemeinen Lösung (siehe Ende)

Bezug
        
Bezug
Lösen einer DGL mit hom. DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Sa 07.05.2011
Autor: leduart

Hallo
1.es fehlt ein Faktor 1/2
du hast: $C(x) = - cos x $ [mm] e^{x} [/mm] $ +sin x $ [mm] e^{x} [/mm] $ + c $
richtig ist $C(x) = 0.5*(- cos x * [mm] e^{x} [/mm]  +sin x * [mm] e^{x} [/mm] )+ c$
2. wenn du eine part. Lösung rätst, dann gilt [mm] y=y_h+y_p [/mm]
bei variation der Konstanten gilt [mm] y=C(x)*y_H [/mm]
damit ist deine Frage mit dem c später beantwortet.
Um solche Fehler, wie das 0.5 zu vermeiden, lohnt es sich immer die endlösung zur Probe in die Dgl einzusetzen.
Gruss leduart


Bezug
                
Bezug
Lösen einer DGL mit hom. DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 Sa 07.05.2011
Autor: Frankstar

ist mir nicht nachvollziehbar, wie du auf die 0,5 kommst


Bezug
                        
Bezug
Lösen einer DGL mit hom. DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Sa 07.05.2011
Autor: leduart

Hallo
1.rechne mal vor, wie du das Integral bestimmt hast.
2. setz in die Dgl ein.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de