www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Matlab" - Lösen einer PDGL mit ODE45
Lösen einer PDGL mit ODE45 < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen einer PDGL mit ODE45: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:00 Do 03.03.2011
Autor: Christoph

Hallo Forum,

ich grübele schon länger an einer Lösung einer DGL, die die Konzentrationsverteilung eines Schadgases c in einer Schüttschicht beschreibt. Luft strömt in die Schüttschicht aus Aktivkohle-Teilchen, wobei sich die enthaltene Konzentration c durch Konvektion und Dispersion ändert und eine Menge d an den Teilchen adsorbiert wird.

Die DGL sieht folgendermaßen aus:
[mm] a*\bruch{\delta c}{\delta t}=b*\bruch{\delta c}{\delta z}+c*\bruch{\delta^2 c}{\delta z^2} [/mm] + d(z,t)

Die Konzentration c ändert sich mit dem Ort z und der Zeit t. Ich habe versucht, diese Gleichung mit einem Differenzenverfahren zu lösen, da die Steigung von einem Ortsschritt zum nächsten aber schnell zu groß ist, ist die Lösung nicht stabil.
Jetzt versuche ich, die Ableitungen nach z zu diskretisieren und als ODE in MAtlab mit z.B. ODE45 zu lösen.

Vielleicht hat hier jemand eine Idee, wie ich die Gleichung am besten auf eine lösbare Form bringen kann?
Für Hilfe bin ich sehr dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Christoph


        
Bezug
Lösen einer PDGL mit ODE45: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:58 So 06.03.2011
Autor: frozer

mhh ich bin kein chemiker (das hört sich so danach an...) und ich kann nicht wirklich was mit der Funktion d(z,t) anfangen was die jetzt genau macht....
aber meine erste ganz banale idee wäre den produktansatz zu wählen und zu probieren ob das gut geht....

also zu behaupten dass:
c(z,t)= Z(z)*T(t) gilt.

eingesetzt in die Dgl liefert das ja:
a*Z(z)*T'(t) = b* Z'(z)*T(t)+c*Z''(z)*T(t)+d(z,t).......
jetzt weiß ich nicht so recht was deine d(z,t) macht.....
geht da auch ein ähnlicher Ansatz kannst du deine DGL nach t bzw z seperieren und sagen das ist gleich einer Konstanten....

Bezug
        
Bezug
Lösen einer PDGL mit ODE45: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 So 06.03.2011
Autor: meili

Hallo Christoph,

[willkommenmr]



Ist eine Funktion c(z,t) gesucht, die die DGL

[mm] $a*\bruch{\partial c}{\partial t} [/mm] = [mm] b*\bruch{\partial c}{\partial z} [/mm] + [mm] c*\bruch{\partial^2 c}{\partial z^2} [/mm] + d(z,t)$ erfüllt;
wobei a, b, c Konstanten sind (mit bedauerlicher doppeldeutiger Verwendung von c)?


Oder ist die DGL
[mm] $a*\bruch{\partial c}{\partial t} [/mm] = [mm] b*\bruch{\partial c}{\partial z} [/mm] + [mm] c(z,t)*\bruch{\partial^2 c}{\partial z^2} [/mm] + d(z,t)$ ?


Gruß
meili

Bezug
        
Bezug
Lösen einer PDGL mit ODE45: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 So 03.04.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de