www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lösen von DGL
Lösen von DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen von DGL: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:23 Fr 29.02.2008
Autor: Carlitos

Aufgabe
Lösen Sie die folgende DGL unter den angegebene Randbedingungen:

dy(x)/dx  -  ay(x)² = 0 ; y(0)= 5 durch Variablentrennung

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe nie DGL in der Uni oder Schule gelernt, jetzt habe ich die Uni gewechselt und soll die DGL anwenden...komme alleine nicht ganz klar:

Nach Variablentrennung sieht meine Gleichung so aus:
dy(x)/y(x)²= -a * dx
Integration: ln y(x)²= -a*x+c'
Exponieren: y(x)²= exp [c']* exp[-ax] = C* exp[-ax]
ich weiß nicht wie ich jetzt weiter vorgehen muss.
Es wäre nett, wenn mir jemand helfen könnte!

        
Bezug
Lösen von DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Fr 29.02.2008
Autor: leduart

Hallo Carlitos
[mm] \integral{\bruch{1}{y^2} dy} [/mm] ist NICHT [mm] ln(y^2)=2*lny [/mm]
du findest sicher selbst die Stammfkt von [mm] y^{-2} [/mm]
Also such erst die richtige Lösung.
In der steht dann ein C, das bestimmst du , indem du y(0)=5 einsetzt.
Gruss leduart


Bezug
                
Bezug
Lösen von DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Fr 29.02.2008
Autor: Carlitos

Hi,
danke für deine Hilfe erstmal.

also wenn ich das integriere ist es dann: -y^-1+c'   ??

-->  -y^-1  + c' = -ax+c
-->   y^-1 - c' =-ax + c
-->   y(x)^-1 = -ax + c+ c'  

So richtig???
Aber wie soll ich dann y(0)=5 einsetzten um c rauszubekommen?
Was muss ich dann mmit dem ausgerechnetem C machen?
      


Bezug
                        
Bezug
Lösen von DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Fr 29.02.2008
Autor: schachuzipus

Hallo Eva,

> Hi,
>  danke für deine Hilfe erstmal.
>  
> also wenn ich das integriere ist es dann: -y^-1+c'   ?? [daumenhoch]
>  
> -->  -y^-1  + c' = -ax+c

wie kommst du auf das "-" auf der rechten Seite?

Ich glaube, das hast du in deinem anderen post schon so gehabt.

Die DGL lautet doch [mm] $\underbrace{\frac{dy}{dx}}_{=y'}-ay^2=0$ [/mm] ,also [mm] $\frac{dy}{dx}=\red{+}ay^2$ [/mm]

>  -->   y^-1 - c' =-ax + c

wo ist hier das "-" von der Gleichung darüber hin? Du hast die rechte Seite der Gleichung nicht verändert...

>  -->   y(x)^-1 = -ax + c+ c' [ok]

hier stimmt's wieder ;-)

Nenne nun die Konstante $c+c'=:C$

Dann hast du also [mm] $\frac{1}{y(x)}=-ax+C$, [/mm] also [mm] $y(x)=-\frac{1}{ax-C}$ [/mm]


Um $C$ zu berechnen, setze die AB ein: [mm] $y(\red{0})=5\gdw -\frac{1}{a\cdot{}\red{0}-C}=5\gdw C=\frac{1}{5}$ [/mm]

Die Lösungsfunktion ist also [mm] $y(x)=-\frac{1}{ax-\frac{1}{5}}$ [/mm]

  

>
> So richtig???

ja, fast, es ist irgendwie etwas kuddelmuddel, aber im Großen und Ganzen richtig

>  Aber wie soll ich dann y(0)=5 einsetzten um c
> rauszubekommen? [ok]

ganz genau, einfach ausrechnen

>  Was muss ich dann mmit dem ausgerechnetem C machen?

$C$ durch den errechneten Wert ersetzen


LG

schachuzipus  


Bezug
                                
Bezug
Lösen von DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Fr 29.02.2008
Autor: Carlitos

Super!!! Vielen vielen Dank für die detailierte Hilfe...

Ich bin schon etwas durcheinander...deswegen hab ich das "-" auf der linken Seite gehabt...aber ist klar "+"

Ich hoffe ich kriege die anderen Aufgaben jetzt auch so hin...
Carlitos!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de