www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Lösen von Extremwert-Problemen
Lösen von Extremwert-Problemen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen von Extremwert-Problemen: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:58 Mi 04.05.2005
Autor: eff3kt

hallo

Es soll ein quaderförmiger Schuppen mit quadratischem Grundriss gebaut werden. Sein Volumen soll maximal werden. Die Außenkanten des gesamten Schuppens sind zusammen 36 meter lang. Berechnen sie die Maße des Schuppens und sein Volumen.

Also ich habe mir eine Skizze gemacht und die Formel V für Volumen aufgestellt und noch die Formel O für die Oberfläche aba damit weiter kann ich nix anfangen....bitte um Hife

V=a²*b
O=a²+4ab

mfg

[Dateianhang nicht öffentlich]



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Lösen von Extremwert-Problemen: Ansätze
Status: (Antwort) fertig Status 
Datum: 18:46 Mi 04.05.2005
Autor: Roadrunner

Hallo eff3kt !

[willkommenmr]


> Es soll ein quaderförmiger Schuppen mit quadratischem
> Grundriss gebaut werden. Sein Volumen soll maximal werden.
> Die Außenkanten des gesamten Schuppens sind zusammen 36
> meter lang. Berechnen sie die Maße des Schuppens und sein
> Volumen.
>  
> Also ich habe mir eine Skizze gemacht und die Formel V für
> Volumen aufgestellt und noch die Formel O für die
> Oberfläche aba damit weiter kann ich nix anfangen....bitte
> um Hife
>  
> V=a²*b
> O=a²+4ab

Das ist auch kein Wunder, daß Du hier nicht weiterkommst, weil man mit der Formel für die Oberfläche hier nichts anfangen kann.

Es ist ja eine Gesamt-Kantenlänge gegeben mit 36m.

Diese errechnet sich zu: $L \ = \ 2*4*a + 4*b \ = \ 8a + 4b \ = \ 36$

Diese Gleichung können wir nun z.B. nach $b$ auflösen und dann in die Volumenformel einsetzen.

Die Volumenformel hast Du ja richtig aufgestellt. Mit dem eingesetzten $b$ hast Du dann Deine Zielfunktion $V(a) \ = \ ...$, für die Du Deine Extremwertberechnung (Ableitungen bilden, Nullstellen der 1. Ableitung ermitteln etc.) durchführen kannst.

Kommst Du nun alleine weiter?


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de