www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Lösung DGL
Lösung DGL < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Mi 13.06.2012
Autor: Approximus

Aufgabe
Bestimmen Sie alle Lösungen der DGL [mm] u_{x}+u_{y}=1 [/mm]

(i) mittels Transformation [mm] \xi=x+y [/mm] und [mm] \nu=x-y [/mm]
(ii) durch Lösen des charakteristischen Systems

Hat die DGL eine Lösung, die auf der Diagonale x=y konstant ist?
Überprüfen Sie die Determinantenbedingung des Existenzsatzes für dieses Anfangswertproblem.

Hallo,
ich versuche gerade, mir das Themengebiet der DGL zu erarbeiten und bin dabei über diese Aufgabe gestolpert, allerdings weiss ich nicht so richtig, wie ich diese Aufgabe angehen soll. Ich habe auch noch ähnliche Aufgaben gefunden und wäre euch sehr dankbar, wenn ihr mir anhand dieses Beispiels zeigen könnt, wie man so etwas angeht.

MfG
A.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösung DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 Mi 13.06.2012
Autor: Approximus

zum Beispiel hab ich bei Punkt (i) das Problem, dass ich nicht weiss, wie [mm] u_{x} [/mm] bzw. [mm] u_{y} [/mm] aussieht. Wie setze ich da die Transformation an?

Bezug
        
Bezug
Lösung DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 13.06.2012
Autor: Approximus

Ich glaube, ich bin hier im falschen Teil des Forums für DGL gelandet. Habe gerade gelesen, dass [mm] u_{x}=\bruch{\partial u}{\partial x} [/mm] bedeutet und somit handelt es sich um eine partielle DGL.

Bezug
                
Bezug
Lösung DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Mi 13.06.2012
Autor: MathePower

Hallo Approximus,

> Ich glaube, ich bin hier im falschen Teil des Forums für
> DGL gelandet. Habe gerade gelesen, dass
> [mm]u_{x}=\bruch{\partial u}{\partial x}[/mm] bedeutet und somit
> handelt es sich um eine partielle DGL.


Ich habe diese Frage in den richtigen Teil des Forums verschoben:

"Forum: Mathematik > Hochschule > Analysis > Differentialgleichungen > partielle"

oder abgekürzt: "DiffGlPar"


Gruss
MathePower

Bezug
        
Bezug
Lösung DGL: Aufgabe i)
Status: (Antwort) fertig Status 
Datum: 19:44 Mi 13.06.2012
Autor: MathePower

Hallo Approximus,


> Bestimmen Sie alle Lösungen der DGL [mm]u_{x}+u_{y}=1[/mm]
>  
> (i) mittels Transformation [mm]\xi=x+y[/mm] und [mm]\nu=x-y[/mm]
>  (ii) durch Lösen des charakteristischen Systems
>  
> Hat die DGL eine Lösung, die auf der Diagonale x=y
> konstant ist?
>  Überprüfen Sie die Determinantenbedingung des
> Existenzsatzes für dieses Anfangswertproblem.
>  Hallo,
> ich versuche gerade, mir das Themengebiet der DGL zu
> erarbeiten und bin dabei über diese Aufgabe gestolpert,
> allerdings weiss ich nicht so richtig, wie ich diese
> Aufgabe angehen soll. Ich habe auch noch ähnliche Aufgaben
> gefunden und wäre euch sehr dankbar, wenn ihr mir anhand
> dieses Beispiels zeigen könnt, wie man so etwas angeht.
>  


Bei i) setzt Du wie folgt an:

[mm]u\left(x,y\right)= u\left( \ \xi\left(x,y\right), \ \nu\left(x,y\right) \ \right)[/mm]

und differenzierst die rechte Seite  nach x und y mit Hilfe
der []verallgemeinerten Kettenregel .


> MfG
>  A.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Lösung DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:05 Do 14.06.2012
Autor: Approximus

Okay, dann habe ich jetzt:

[mm] u(x,y)=\omega(\xi(x,y),\nu(x,y)) [/mm] mit [mm] \xi=x+y [/mm] und [mm] \nu=x-y [/mm]

Die partiellen Ableitungen sind:

[mm] u_{x}=\omega_{\xi}*\xi_{x}+\omega_{\nu}*\nu_{x} [/mm] und [mm] u_{y}=\omega_{\xi}*\xi_{y}+\omega_{\nu}*\nu_{y} [/mm]

einsetzen in [mm] u_{x}+u_{y}=1: [/mm]

[mm] \omega_{\xi}\underbrace{(\xi_{x}+\xi_{y})}_{=2}+\omega_{\nu}\underbrace{(\nu_{x}+\nu_{y})}_{=0}=1 [/mm]

daraus folg also:

[mm] \omega_{\xi}=\bruch{1}{2} [/mm]

kann ich da jetzt integrieren?

[mm] \integral{\omega_{\xi}d\xi}=\integral{\bruch{1}{2}d\xi} \Rightarrow \omega=\bruch{1}{2}*\xi=\bruch{1}{2}(x+y)=u(x,y) [/mm]

Ist das meine allgemeine Lösung? Wenn ich das jetzt in meine partielle DGL einsetze, kommt das richtige heraus.

Bezug
                        
Bezug
Lösung DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 14.06.2012
Autor: MathePower

Hallo Approximus,

> Okay, dann habe ich jetzt:
>  
> [mm]u(x,y)=\omega(\xi(x,y),\nu(x,y))[/mm] mit [mm]\xi=x+y[/mm] und [mm]\nu=x-y[/mm]
>  
> Die partiellen Ableitungen sind:
>  
> [mm]u_{x}=\omega_{\xi}*\xi_{x}+\omega_{\nu}*\nu_{x}[/mm] und
> [mm]u_{y}=\omega_{\xi}*\xi_{y}+\omega_{\nu}*\nu_{y}[/mm]
>  
> einsetzen in [mm]u_{x}+u_{y}=1:[/mm]
>  
> [mm]\omega_{\xi}\underbrace{(\xi_{x}+\xi_{y})}_{=2}+\omega_{\nu}\underbrace{(\nu_{x}+\nu_{y})}_{=0}=1[/mm]
>  
> daraus folg also:
>  
> [mm]\omega_{\xi}=\bruch{1}{2}[/mm]
>  
> kann ich da jetzt integrieren?
>  
> [mm]\integral{\omega_{\xi}d\xi}=\integral{\bruch{1}{2}d\xi} \Rightarrow \omega=\bruch{1}{2}*\xi=\bruch{1}{2}(x+y)=u(x,y)[/mm]
>  
> Ist das meine allgemeine Lösung? Wenn ich das jetzt in
> meine partielle DGL einsetze, kommt das richtige heraus.


Das ist nur die partikuläre der partiellen DGL.

Die Gesamtlösung ergibt sich zu:

[mm]u\left(x,y\right)=c_{1}*g\left(x-y\right)+\bruch{1}{2}*\left(x+y\right)[/mm]

wobei [mm]g:\IR \to \IR[/mm] ist.


Gruss
MathePower

Bezug
                                
Bezug
Lösung DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:45 So 17.06.2012
Autor: Approximus

Okay, vielen Dank für deine Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de