www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lösung Michaelis Menten DGL
Lösung Michaelis Menten DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung Michaelis Menten DGL: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:02 Mi 07.11.2007
Autor: Verzweifelthoch23

Aufgabe
Eine enzymatisch Reaktion verlaufe nach dem von Michaelis und Menten formulierten Gesetzmäßigkeit ab.
[mm] \bruch{dx}{dt} [/mm] = [mm] -\bruch{Vx}{x+K} [/mm]
Bestimmen Sie nun die Lösung x(t) zur Anfangsbedingung [mm] x(0)=x_{0} [/mm]

So... hab die Gleichung ein wenig umgestellt:
[mm] -\bruch{x+K}{Vx}*dx=dt [/mm]
komm aber dann nicht mehr weiter, weil ich nicht genau weiß, wie ich die DGL aufzulösen habe.

THX schonmal

        
Bezug
Lösung Michaelis Menten DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Mi 07.11.2007
Autor: Zwerglein

Hi,

ich gebe zu, dass ich das Gesetz von Michaelis und Menten nicht kenne.
Drum meine Frage: Sind V und K konstant?

mfG!
Zwerglein

Bezug
                
Bezug
Lösung Michaelis Menten DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Mi 07.11.2007
Autor: Verzweifelthoch23

Ja K und V sind Konstanten

Bezug
        
Bezug
Lösung Michaelis Menten DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Mi 07.11.2007
Autor: generation...x

Jetzt hast du die Variablen schon getrennt. Wenn du links noch vereinfachst, hast du

[mm](-\bruch{1}{V} -\bruch{K}{Vx}) dx = dt[/mm]

Nun kannst du auf beiden Seiten integrieren. Dann noch umformen, Anfangswert zur Bestimmung der Konstanten einsetzen - fertig.

Bezug
                
Bezug
Lösung Michaelis Menten DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Mi 07.11.2007
Autor: Verzweifelthoch23

wenn ich die Integrale auflöse komm ich trotzdem auf keinen grünen Zweig.
Ich bekomme als Lösung der Integration:
[mm] -\bruch{K*ln(x)}{V}-\bruch{x}{V} [/mm] = t+C

wie mach ich das denn mit dem Anfangswert??

Also ich habe da ein ziemlich komisches Endergebnis, nämlich:
[mm] x*e^\bruch{x}{k} [/mm] = [mm] e^-\bruch{c*V}{k} [/mm]
das kann's doch irgentwie nich sein...

Bezug
                        
Bezug
Lösung Michaelis Menten DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 Mi 07.11.2007
Autor: rainerS

Hallo!

> wenn ich die Integrale auflöse komm ich trotzdem auf keinen
> grünen Zweig.
>  Ich bekomme als Lösung der Integration:
>  [mm]-\bruch{K*ln(x)}{V}-\bruch{x}{V}[/mm] = t+C

[ok]

> wie mach ich das denn mit dem Anfangswert??

Der ist doch [mm]x(0)=x_0[/mm], das setzt du in deine Lösung ein:

[mm] -\bruch{K*\ln x_0}{V}-\bruch{x_0}{V} = C[/mm].
.
Also ist

[mm]-\bruch{K*\ln x}{V}-\bruch{x}{V} = t -\bruch{K*\ln x_0}{V}-\bruch{x_0}{V}[/mm]

oder:

[mm]-\ln\left(\bruch{x}{x_0}\right) - \bruch{1}{K}(x-x_0) = \bruch{V}{K}*t \implies \bruch{x_0}{x} * \mathrm{e}^{-(x-x_0)/K} = \mathrm{e}^{Vt/K}[/mm]

Viele Grüße
   Rainer

Bezug
                                
Bezug
Lösung Michaelis Menten DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:29 Mi 07.11.2007
Autor: Verzweifelthoch23

ah ha,
jetzt hab ich's!!
Vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de