www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Lösung des rekursiven Gleichun
Lösung des rekursiven Gleichun < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung des rekursiven Gleichun: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:26 So 17.06.2007
Autor: Clarix

Aufgabe
Man löse das rekursive Gleichungssystem a(0)=0 b(0)=2, a(n+1)= 3a(n)+2b(n), b(n+1)=a(n)+b(n) durch Angabe einer direkten Formel für a(n) und b(n) in Abhängigkeit von n.  

Ich denke mal, dass man das mit Vektoren und Matrizen machen muss, allerdings bekomme ich für a(n) keine Formel raus... ich wäre sehr froh, wenn mir jemand helfen könnte... ich glaube mein Lösungsansatz ist auch falsch.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösung des rekursiven Gleichun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 So 17.06.2007
Autor: Bastiane

Hallo Clarix!

> Man löse das rekursive Gleichungssystem a(0)=0 b(0)=2,
> a(n+1)= 3a(n)+2b(n), b(n+1)=a(n)+b(n) durch Angabe einer
> direkten Formel für a(n) und b(n) in Abhängigkeit von n.
> Ich denke mal, dass man das mit Vektoren und Matrizen
> machen muss, allerdings bekomme ich für a(n) keine Formel
> raus... ich wäre sehr froh, wenn mir jemand helfen
> könnte... ich glaube mein Lösungsansatz ist auch falsch.

Hilft es nicht, wenn du mal ein paar Werte berechnest? Also a(1), b(1) usw.? Und wenn du das hast, kannst du sie hier vllt mal posten, dann muss sie nicht jeder, der helfen will, alleine berechnen. :-)

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Lösung des rekursiven Gleichun: Lösungsidee
Status: (Antwort) fertig Status 
Datum: 23:49 So 17.06.2007
Autor: Vreni

Hallo Clarix,

ich denke ein Ansatz über Vektoren und Matrizen ist durchaus vernünftig und lässt sich auch recht problemlos aufstellen. Ich gebe dir mal die Beziehung von a(n+1), b(n+1) und a(n), b(n) in Vektor-Matrixschreibweise an:

[mm] $$\left( \begin{array}{c} a(n+1) \\ b(n+1) \end{array} \right) [/mm] = M [mm] \cdot \left( \begin{array}{c} a(n) \\ b(n) \end{array} \right) [/mm] = [mm] \left( \begin{array}{cc} 3 & 2 \\ 1 & 1 \end{array} \right) \cdot \left( \begin{array}{c} a(n) \\ b(n) \end{array} \right)$$ [/mm]

Jetzt überleg dir mal, wie du [mm] \left(\begin{array}{c} a(n) \\ b(n) \ \end{array}\right) [/mm]  in Abhängigkeit von M und [mm] \left(\begin{array}{c} a(0) \\ b(0) \end{array}\right) [/mm]
ausdrücken kannst.

Dann würde ich weiter über Diagonlisierung (Eigenwerte und Eigenräume) gehen, aber ich bin mir nicht mehr ganz sicher wies geht und außerdem ists ein ziemlicher Rechenaufwand für die Uhrzeit. Aber wenn du dazu noch Fragen hast schau ich morgen gern mal nach.
Vielleicht reicht auch die Darstellung mit der Matrix (also die on Abhängigkeit von a(0) und b(0)) für dich schon aus.

Gruß,
Vreni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de