www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lösung einer Differentialgl.
Lösung einer Differentialgl. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer Differentialgl.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:32 Di 08.08.2006
Autor: Elbi

Aufgabe
Gegeben sei die Differentialgleichung
[mm]y'=f(x,y):= \vektor{|x|y_1y_2 \\ y_2^2cosx+y_1^2sinx}[/mm]
Bestimmen Sie unter Angabe des maximalen Existenzintervalls die Lösung der Differentialgleichung für den Anfangswert [mm]y(0)=(0,1)^t[/mm].

Hallo allezusammen,

also ich habe bei der Aufgabe hier kein wirkliches Pack-an, kein vernünftiger Ansatz und auch keine Idee. Habt ihr einen Tipp oder Ansatz für mich parat? Wäre echt super! Danke schön im voraus.

LG

Elbi

        
Bezug
Lösung einer Differentialgl.: Unklarheit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Mi 09.08.2006
Autor: EvenSteven

Hallo
Hast du den Satz von Picard-Lindelöf schon gehabt (Existenzsatz von Lösungen von D'gls)? Der scheint hier angebracht und ich glaube, du solltest das x in t umbenennen (um die Zeitabhängigkeit hervorzuheben). Der Satz sagt auch etwas über das Existenzintervall aus.

Ciao

EvenSteven

Bezug
                
Bezug
Lösung einer Differentialgl.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:35 Do 10.08.2006
Autor: Elbi

Hallo, also

Die Aufgabe hat zwei Teilaufgaben:
a( Untersuchen Sie die DGL auf Existenz & Eindeutigkeit von Lsg.en zu geg. Anfangswert.

-> Hier habe ich Picard.Lindelöf angewendet, denn der sagt mir, dass eine Lsg. ex.

b) Ist die Frage, die ich gepostet habe. Und dort weiß ich nicht mit welchen Mitteln ich eine konkrete Lsg. berechnen kann.

LG
Elbi

Bezug
        
Bezug
Lösung einer Differentialgl.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Do 10.08.2006
Autor: EvenSteven

Hi
Also ich glaube ich hab's gefunden:

Berechne

[mm] y(t) = y(0) + \integral_{0}^{t}{f(s,y(s)) ds}[/mm]

Wenn du das ableitest kriegst du genau deine D'gl. Das maximale Existenzintervall 0<t<T wirst du dann - so vermute ich - beim Integrieren ablesen können.

Gruss

EvenSteven

Bezug
        
Bezug
Lösung einer Differentialgl.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Sa 12.08.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de