www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Lösung einer Ungleichung
Lösung einer Ungleichung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer Ungleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:44 Do 27.10.2005
Autor: Wimme

Hallo!!
ich habe hier folgende Aufgabe:
Zum Anbringen einer Holzlatte werden 72 Nägel benötigt. Diese Nägel werden in Päkchen zu je 20 Nägeln verkauft. Wie viele Pälchen muss man kaufen, damit die Nägel zu 98% reichen?
Wenn er bedenkt, dass er jeden 6.Nagel verbiegt!

P(x [mm] \ge72) \ge0.98 [/mm]

das habe ich dann gemacht zu:

[mm] \phi(\frac{71.5-5/6*n}{\sqrt{5/36*n}}) [/mm] - [mm] \phi(\frac{-0.5-5/6*n}{\sqrt{5/36*n}}) \geq [/mm] -0.02

nun weiß ich nicht, wie ich das weiter auflösen kann!

Wäre für jede Hilfe dankbar!

Gruß,
Wimme

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=22787

        
Bezug
Lösung einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Do 27.10.2005
Autor: Zwerglein

Hi, Wimme,

> Hallo!!
>  ich habe hier folgende Aufgabe:
>  Zum Anbringen einer Holzlatte werden 72 Nägel benötigt.
> Diese Nägel werden in Päkchen zu je 20 Nägeln verkauft. Wie
> viele Pälchen muss man kaufen, damit die Nägel zu 98%
> reichen?
>  Wenn er bedenkt, dass er jeden 6.Nagel verbiegt!
>  
> P(x [mm]\ge72) \ge0.98[/mm]
>  
> das habe ich dann gemacht zu:
>  
> [mm]\phi(\frac{71.5-5/6*n}{\sqrt{5/36*n}})[/mm] -
> [mm]\phi(\frac{-0.5-5/6*n}{\sqrt{5/36*n}}) \geq[/mm] -0.02
>  

Diese Umformung ist reichlich seltsam!

Aus P(X [mm] \ge [/mm] 72) [mm] \ge [/mm] 0,98

folgt doch erst mal:

1 - P(X [mm] \le [/mm] 71) [mm] \ge [/mm] 0,98

oder: P(X [mm] \le [/mm] 71) [mm] \le [/mm] 0,02

Und nun  verwenden wir die N-Vtlg. als Näherung (was wegen npq > 9 auch geht!):

[mm] \Phi(\bruch{71,5 - \bruch{5}{6}*n}{\wurzel{\bruch{5}{36}*n}}) \le [/mm] 0,02

oder:

[mm] \Phi(\bruch{-71,5 + \bruch{5}{6}*n}{\wurzel{\bruch{5}{36}*n}}) \ge [/mm] 0,98

Tafelwerk:

[mm] \bruch{-71,5 + \bruch{5}{6}*n}{\wurzel{\bruch{5}{36}*n}} \ge [/mm] 2,06

Substitution z = [mm] \wurzel{n} [/mm]
ergibt:
[mm] \bruch{5}{6}z^{2} [/mm] - [mm] 2,06*\wurzel{\bruch{5}{36}}*z [/mm] - 71,5 [mm] \ge [/mm] 0

Naja: Und diese quadratische Ungleichung musst Du nun lösen!
(PS: Vergiss' die Rücksubstitution n = [mm] z^{2} [/mm] nicht!
Mein Ergebnis: Man braucht mindestens 95 Nägel, also mindestens 5 Päckchen.)

mfG!
Zwerglein




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de