www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Lösungen, Ungleichungen
Lösungen, Ungleichungen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen, Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Mo 03.11.2008
Autor: nina1

Aufgabe
Ermitteln Sie sämtliche reelle Lösungen x von

a) [mm] \wurzel{x+5} [/mm] = x-1

b) [mm] \bruch{1}{|2x-3|} [/mm] > 5

c) |x+3| [mm] \le [/mm] |x-1| + |x-2|

Hallo,

ich komme bei den 3 Aufgaben nicht ganz weiter. Von ähnlichen Aufgaben, die wir vorher geübt hatten, hatten wir die Aufgaben so gelöst, dass wir durch Analyse der Definitionsmengen, z.B. dass unter der Wurzel kein negativer Wert rauskommen darf usw. ermittelt.

Ich habe jetzt aber eigentlich bei jeder Aufgabe nach x umgestellt, weiß aber nicht ob es nicht auch anders geht und ob das so überhaupt richtig ist.

z.B. für

a) x+5 = [mm] (x-1)^{2} [/mm] => nach 0 umstellen und Einsetzen in Mitternachtsformel => x1= 4 und x2= -1

Ist das jetzt die gesamte reelle Lösungsmenge?

b) hier ist denke ich mal x [mm] \not= [/mm] 1,5.
Und nach Umstellen erhält man ja, dass |2x-3| < [mm] \bruch{1}{5}=> [/mm] |2x| < [mm] \bruch{1}{5}+3 [/mm] => |x< < [mm] \bruch{\bruch{16}{5}}{2} [/mm]
und demnach x < 1,6 sein muss => dadurch muss sich ja x zwischen 1,5 und 1,6 befinden => ]1,5 ; 1,6[ (???)

c) hier habe ich auch einfach nach  aufgelöst und x [mm] \ge [/mm] 6 erhalten.


Vielen Dank schonmal und Grüße.

        
Bezug
Lösungen, Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Mo 03.11.2008
Autor: Steffi21

Hallo,

a)
hier heißt es Achtung, Achtung, Äquivalenzumformungen, quadriert man beide Seiten einer Gleichung, so handelt es sich nicht um eine Äquivalenzumformung, hier hast du Recht. -1 und 4 erfüllen deine quadratische Gleichung, da du quadriert hast, ist auf jeden Fall die Probe in der Ausgangsgleichung nötig,

b)
[mm] x\not=1,5 [/mm] ist korrekt, du kennst die Regel, multipliziert man eine Ungleichung mit einer negativen Zahl (Term), so kehrt sich das Relationszeichen um, wir unterscheiden zwei Fälle:
1.) 2x-3>0, also können wir schreiben |2x-3|=2x-3,
2.) 2x-3<0, also können wir schreiben |2x-3|=-(2x-3),

c)
hier sind mehrere Fallunterscheidungen notwendig, du erhälst [mm] x\le0, x\ge6 [/mm]

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de