www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lösungen für LGS berechnen
Lösungen für LGS berechnen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen für LGS berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Di 22.05.2012
Autor: Myth

Aufgabe
Bestimmen Sie alle Lösungen des LGS

[mm] \begin{pmatrix} 2 & 4 & 2 \\ 2 & 12 & 7 \\ 1 & 10 & 6 \end{pmatrix} \begin{pmatrix} x_\text{1} \\ x_\text{2} \\ x_\text{3} \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 12t \\ 12t+7s \\ 7t+8s \end{pmatrix} [/mm]

in Abhängigkeit von s,t [mm] \in \IR. [/mm]

Also lautet das Gleichungssystem:

[mm]2x_\text{1} + 4x_\text{2} + 2x_\text{3} = 12t[/mm]
[mm]2x_\text{1} + 12x_\text{2} + 7x_\text{3} = 12t+7s[/mm]
[mm] x_\text{1} + 10x_\text{2} + 6x_\text{3} = 7t+8s[/mm]

Umformen mit Gauß:

[mm] \begin{vmatrix} 2 & 4 & 2\\ 2 & 12 & 7\\ 1 & 10 & 6 \end{vmatrix} \begin{matrix} 12t\\ 12t+7s\\ 7t+8s \end{matrix} [/mm]

führt zu:

[mm] \begin{vmatrix} 1 & 2 & 1\\ 0 & 8 & 5\\ 0 & 0 & 0 \end{vmatrix} \begin{matrix} 6t\\ 7s\\ t+s \end{matrix} [/mm]

Dann habe ich mein neues LGS:

[mm]x_\text{1} + 2x_\text{2} + x_\text{3} = 6t[/mm]
[mm]8x_\text{2} + 5x_\text{3} = 7s[/mm]
[mm]0 = t+s[/mm]

Somit habe ich ein unterbestimmtes Gleichungssystem, also 3 Unbekannte in 2 Gleichungen. Wie gehe ich hier vor?

Gruß Myth



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösungen für LGS berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Di 22.05.2012
Autor: MathePower

Hallo Myth,

> Bestimmen Sie alle Lösungen des LGS
>  
> [mm]\begin{pmatrix} 2 & 4 & 2 \\ 2 & 12 & 7 \\ 1 & 10 & 6 \end{pmatrix} \begin{pmatrix} x_\text{1} \\ x_\text{2} \\ x_\text{3} \end{pmatrix}[/mm]
> = [mm]\begin{pmatrix} 12t \\ 12t+7s \\ 7t+8s \end{pmatrix}[/mm]
>  
> in Abhängigkeit von s,t [mm]\in \IR.[/mm]
>  Also lautet das
> Gleichungssystem:
>  
> [mm]2x_\text{1} + 4x_\text{2} + 2x_\text{3} = 12t[/mm]
>  
> [mm]2x_\text{1} + 12x_\text{2} + 7x_\text{3} = 12t+7s[/mm]
>  
> [mm]x_\text{1} + 10x_\text{2} + 6x_\text{3} = 7t+8s[/mm]
>  
> Umformen mit Gauß:
>  
> [mm]\begin{vmatrix} 2 & 4 & 2\\ 2 & 12 & 7\\ 1 & 10 & 6 \end{vmatrix} \begin{matrix} 12t\\ 12t+7s\\ 7t+8s \end{matrix}[/mm]
>  
> führt zu:
>  
> [mm]\begin{vmatrix} 1 & 2 & 1\\ 0 & 8 & 5\\ 0 & 0 & 0 \end{vmatrix} \begin{matrix} 6t\\ 7s\\ t+s \end{matrix}[/mm]
>  
> Dann habe ich mein neues LGS:
>  
> [mm]x_\text{1} + 2x_\text{2} + x_\text{3} = 6t[/mm]
>  [mm]8x_\text{2} + 5x_\text{3} = 7s[/mm]
>  
> [mm]0 = t+s[/mm]
>  
> Somit habe ich ein unterbestimmtes Gleichungssystem, also 3
> Unbekannte in 2 Gleichungen. Wie gehe ich hier vor?
>  


Zunächst ist die 3. Gleichung zu lösen.
Setze dies dann in die ersten beiden Gleichungen ein.

Eine Variable kannst Du freiwählen.
Forme dann nach nach übriggebliebenen Variablen um.


> Gruß Myth
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Lösungen für LGS berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Di 22.05.2012
Autor: Myth

Ok, dann löse ich die III nach [mm] x_\text{3} [/mm] und die II nach [mm] x_\text{2} [/mm] auf:

[mm] x_\text{3} [/mm] = [mm] \frac{7t+8s-x_\text{1}-10x_\text{2}}{6} [/mm]
[mm] x_\text{2} [/mm] = [mm] \frac{23t-14s-5x_\text{1}}{2} [/mm]

[mm] x_\text{2} [/mm] in [mm] x_\text{3} [/mm] eingesetzt:

[mm] x_\text{3} [/mm] = [mm] 13s-18t+4x_\text{1} [/mm]

Wenn ich jetzt beides in [mm] x_\text{1} [/mm] einsetze, bekomme ich [mm]s+t = 0[/mm], oder muss ich vorher für [mm] x_\text{1} [/mm] einfach irgendeinen Wert (z.B. 5) aussuchen?

Gruß Myth

Bezug
                        
Bezug
Lösungen für LGS berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Di 22.05.2012
Autor: MathePower

Hallo Myth,

> Ok, dann löse ich die III nach [mm]x_\text{3}[/mm] und die II nach
> [mm]x_\text{2}[/mm] auf:
>  
> [mm]x_\text{3}[/mm] = [mm]\frac{7t+8s-x_\text{1}-10x_\text{2}}{6}[/mm]
>  [mm]x_\text{2}[/mm] = [mm]\frac{23t-14s-5x_\text{1}}{2}[/mm]
>  
> [mm]x_\text{2}[/mm] in [mm]x_\text{3}[/mm] eingesetzt:
>  
> [mm]x_\text{3}[/mm] = [mm]13s-18t+4x_\text{1}[/mm]
>  
> Wenn ich jetzt beides in [mm]x_\text{1}[/mm] einsetze, bekomme ich
> [mm]s+t = 0[/mm], oder muss ich vorher für [mm]x_\text{1}[/mm] einfach
> irgendeinen Wert (z.B. 5) aussuchen?
>  


Jetzt mußt Du s bzw. t so wählen, daß s+t=0 ist.

Dann erhältst Du auch die endgültige Lösung.



> Gruß Myth


Gruss
MathePower

Bezug
                                
Bezug
Lösungen für LGS berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Di 22.05.2012
Autor: Myth

Kann ich dann wählen s=2, t=-2 oder muss ich dass allgemein machen ( s=s und t=-s), denn wenn ich für s und t konkrete Werte einsetze, ist doch die endgültige Lösung nicht mehr abhängig von s und t, wie es in der Aufgabe verlangt ist?!

Also mit s=2 und t=-2 wäre es:

[mm] x_\text{2} [/mm] = [mm] -37-\frac{5}{2}x_\text{1} [/mm]
[mm] x_\text{3} [/mm] = [mm] 62+4x_\text{1} [/mm]


Gruß Myth

Bezug
                                        
Bezug
Lösungen für LGS berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Di 22.05.2012
Autor: Steffi21

Hallo, du hattest doch

(1) [mm] x_1+2x_2+x_3=6t [/mm]
(2) [mm] 8x_2+5x_3=7s [/mm]
(3) 0=t+s

aus (3) folgt
t=-s

[mm] x_3=p [/mm] wobei p ein frei wählbarer Parameter ist

aus (2) folgt
[mm] 8x_2+5p=7s [/mm]
[mm] x_2=\bruch{7}{8}s-\bruch{5}{8}p [/mm]

aus (1) folgt
[mm] x_1+\bruch{7}{4}s-\bruch{5}{4}p+p=6t [/mm]

[mm] x_1+\bruch{7}{4}s-\bruch{1}{4}p=-6s [/mm]

[mm] x_1=-\bruch{31}{4}s+\bruch{1}{4}p [/mm]

Steffi


Bezug
                                                
Bezug
Lösungen für LGS berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Di 22.05.2012
Autor: Myth


> Hallo, du hattest doch
>  
> (1) [mm]x_1+2x_2+x_3=6t[/mm]
>  (2) [mm]8x_2+5x_3=7s[/mm]
>  (3) 0=t+s
>  
> aus (3) folgt
> t=-s
>  
> [mm]x_3=p[/mm] wobei p ein frei wählbarer Parameter ist
>  
> aus (2) folgt
>  [mm]8x_2+5p=7s[/mm]
>  [mm]x_2=\bruch{7}{8}s-\bruch{5}{8}p[/mm]
>  
> aus (1) folgt
>  [mm]x_1+\bruch{7}{4}s-\bruch{5}{4}p+p=6t[/mm]
>  
> [mm]x_1+\bruch{7}{4}s-\bruch{1}{4}p=-6s[/mm]
>  
> [mm]x_1=-\bruch{31}{4}s+\bruch{1}{4}p[/mm]
>  
> Steffi
>  

Ah vielen Dank, jetzt hab ich das mit dem frei wählbaren Parameter verstanden, hatten wir so in der Vorlesung nicht gemacht. Dann sind

[mm]x_1=-\bruch{31}{4}s+\bruch{1}{4}p[/mm]
[mm]x_2=\bruch{7}{8}s-\bruch{5}{8}p[/mm]
[mm]x_3=p[/mm]

ALLE Lösungen mit p [mm] \in \IR, [/mm] nehm ich an?!

Gruß Myth

Bezug
                                                        
Bezug
Lösungen für LGS berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Di 22.05.2012
Autor: MathePower

Hallo Myth,

> > Hallo, du hattest doch
>  >  
> > (1) [mm]x_1+2x_2+x_3=6t[/mm]
>  >  (2) [mm]8x_2+5x_3=7s[/mm]
>  >  (3) 0=t+s
>  >  
> > aus (3) folgt
> > t=-s
>  >  
> > [mm]x_3=p[/mm] wobei p ein frei wählbarer Parameter ist
>  >  
> > aus (2) folgt
>  >  [mm]8x_2+5p=7s[/mm]
>  >  [mm]x_2=\bruch{7}{8}s-\bruch{5}{8}p[/mm]
>  >  
> > aus (1) folgt
>  >  [mm]x_1+\bruch{7}{4}s-\bruch{5}{4}p+p=6t[/mm]
>  >  
> > [mm]x_1+\bruch{7}{4}s-\bruch{1}{4}p=-6s[/mm]
>  >  
> > [mm]x_1=-\bruch{31}{4}s+\bruch{1}{4}p[/mm]
>  >  
> > Steffi
>  >  
>
> Ah vielen Dank, jetzt hab ich das mit dem frei wählbaren
> Parameter verstanden, hatten wir so in der Vorlesung nicht
> gemacht. Dann sind
>  
> [mm]x_1=-\bruch{31}{4}s+\bruch{1}{4}p[/mm]
>  [mm]x_2=\bruch{7}{8}s-\bruch{5}{8}p[/mm]
>  [mm]x_3=p[/mm]
>
> ALLE Lösungen mit p [mm]\in \IR,[/mm] nehm ich an?!
>  


Ja, und natürlich mit [mm]s \in \IR[/mm].


> Gruß Myth


Gruss
MathePower

Bezug
                                                                
Bezug
Lösungen für LGS berechnen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Di 22.05.2012
Autor: Myth

Alles klar, nochmals vielen Dank an MathePower und Steffi für die schnelle Hilfe!!!

Gruß Myth

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de