www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Lösungmenge Angeben
Lösungmenge Angeben < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungmenge Angeben: Hilfe bei Umformung
Status: (Frage) beantwortet Status 
Datum: 16:26 So 16.12.2007
Autor: master_nic

Aufgabe
Man gebe die Lösungsmenge an:

a)

[mm] 0\le \bruch{x(x-3)}{(x-1)^{3}} \le x^{-1} [/mm]

b)

x-1 < [mm] 3\wurzel{3x^{2}-1} [/mm]

Hi
Ich habe gerade ein Brett vorm Kopf und kriege diese beide Aufgaben nicht nach x aufglöst. Ich muss da einfach irgendwas übersehen. Kann mir da bitte einer weiterhelfen?

        
Bezug
Lösungmenge Angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 So 16.12.2007
Autor: AnnaM

Hallo master_nic,

hier schon mal ein kleiner Tip zu a):

Überlege zunächst, welche Einschränkungen für das x gelten.
1. Was folgt aus [mm] 0\le x^{-1} [/mm] ?
2. Was folgt aus [mm] 0\le \bruch{x(x-3)}{(x-1)^{3}} [/mm] ?
      Betrachte hierbei zwei Fälle:
      i)  Zähler [mm] \ge [/mm] 0
      ii) Zähler [mm] \le [/mm] 0
                                     Was gilt hier jeweils für den Nenner?

Beachte bei 2. auch, was Du bei 1. heruasgefunden hast und was deshalb nicht mehr in frage kommt.

Nach diesen Überlegungen hast Du schon mal ein paar Einschränkungen für x, die auf jeden Fall gelten.

Jetzt musst Du die"letzte" Ungleichung noch betrachten und zwar: [mm] \bruch{x(x-3)}{(x-1)^{3}}\le x^{-1} [/mm]
Bringe hierfür das [mm] x^{-1} [/mm] auf die andere Seite, so dass Du dort [mm] \le [/mm] 0 stehen hast und löse diese Ungleichung wieder mit Fallunterscheidung, ähnlich wie oben...

Zum Schluss musst Du noch deine ganzen Ergebnisse zusammenfassen und dann bist Du fertig. :-)

Falls Du noch Probleme hast oder es so doch nicht ganz klappt, sag bescheid.

Schöne Grüße Anna

Bezug
        
Bezug
Lösungmenge Angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 01:27 Mo 17.12.2007
Autor: leduart

Hallo
1. Aufgabe mit x und [mm] (x-1)^3 [/mm] multiplizieren Fallunterscheidung für beide gleiches Vorzeichen und beide entgegengesetztes Vorzeichen. im 2. fall Ungleichzeichen umdrehen, im 1. fall bleiben sie
dann Klammern auflösen.
2. Aufgabe
Fallunterscheidung x-1>0 x-1<0 dann quadrieren.
Gruss leduart

Bezug
                
Bezug
Lösungmenge Angeben: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:55 Mo 17.12.2007
Autor: AnnaM

Hallo Leduart,

>  2. Aufgabe
>  Fallunterscheidung x-1>0 x-1<0 dann quadrieren.

Ich verstehe nicht so ganz, warum du bei dieser Aufgabe erst eine Fallunterscheidung nach x-1>0 und x-1<0 machst und dann quadrierst.. Dann ist doch [mm] (x-1)^{2} [/mm] sowieso [mm] \ge [/mm] 0 oder nicht?
Kannst du Deine Vorgehensweise vielleicht nochmal etwas genauer erläutern?

Ich wäre damit anfgefangen, dass [mm]3x^{2}-1\ge0[/mm] sein muss, da unter der Wurzel nichts negatives stehn darf und wäre dadurch zur Fallunterscheidung   (i)  [mm]x\ge\bruch{1}{\wurzel{3}}[/mm]    
und                  (ii) [mm]x\le-\bruch{1}{\wurzel{3}}[/mm]
gekommen.

Schöne Grüße Anna

Bezug
                        
Bezug
Lösungmenge Angeben: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mi 19.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de