www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Lösungsansatz
Lösungsansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:41 Mi 26.11.2008
Autor: JMW

Aufgabe
Berechnen Sie die allgemeine reele Lösungen folgender Differentialgleichung: y''(x)+y'(x)-2y(x)+x²=0

Ich bin so vorgegangen, das ich erst den homogenen Teil errechnet habe.
Nullstellen aus der characteristischen Gleichung sind: 1 und -2.
Darraus gibt sich die Allgemeine Lösung für den homogenen Teil:
[mm] y=C1*e^{x}+C2*e^{-2x} [/mm]

Dann brauch ich einen Lösungsansatz für den partikulären Teil -x²
(Hab x² auf die andere Seite gebracht: y''(x)+y'(x)-2y(x)=-x²)

In meinen Mathebuch ist leider keine Lösungsansatz für diese Störfunktion angegeben. Der verwandeste Lösungsansatz wäre wohl der für Polynomfunktionen. Also yp=ax²

Ich habe mal damit gerechnet.
yp'= 2ax
yp''=2

Eingesetzt in die inhomogene Differentialgleichung bekomme ich dann einmal für a 0,5 und die anderen Ergebnisse für a ergeben keinen Sinn.

homogene Lösung und partikulare Lösung addiert ergibt:

[mm] y=C1*e^{x}+C2*e^{2x}+0,5x² [/mm]

Das ist wohl nicht richtig oder? Ich glaube mein Ansatz mit der partikulären Lösung ist falsch. Danke schonmal..

        
Bezug
Lösungsansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Mi 26.11.2008
Autor: fred97


> Berechnen Sie die allgemeine reele Lösungen folgender
> Differentialgleichung: y''(x)+y'(x)-2y(x)+x²=0
>  Ich bin so vorgegangen, das ich erst den homogenen Teil
> errechnet habe.
>  Nullstellen aus der characteristischen Gleichung sind: 1
> und -2.
>  Darraus gibt sich die Allgemeine Lösung für den homogenen
> Teil:
>  [mm]y=C1*e^{x}+C2*e^{-2x}[/mm]
>  
> Dann brauch ich einen Lösungsansatz für den partikulären
> Teil -x²
> (Hab x² auf die andere Seite gebracht:
> y''(x)+y'(x)-2y(x)=-x²)
>  
> In meinen Mathebuch ist leider keine Lösungsansatz für
> diese Störfunktion angegeben. Der verwandeste Lösungsansatz
> wäre wohl der für Polynomfunktionen. Also yp=ax²
>
> Ich habe mal damit gerechnet.
>  yp'= 2ax
>  yp''=2

Hoppla : yp''=2a




>  
> Eingesetzt in die inhomogene Differentialgleichung bekomme
> ich dann einmal für a 0,5 und die anderen Ergebnisse für a
> ergeben keinen Sinn.
>  
> homogene Lösung und partikulare Lösung addiert ergibt:
>  
> [mm]y=C1*e^{x}+C2*e^{2x}+0,5x²[/mm]
>  
> Das ist wohl nicht richtig oder? Ich glaube mein Ansatz mit
> der partikulären Lösung ist falsch. Danke schonmal..



So ist es .

Mache den Ansatz: [mm] y_p(x) [/mm] = [mm] a+bx+cx^2 [/mm]

FRED

Bezug
                
Bezug
Lösungsansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 Fr 28.11.2008
Autor: JMW

Wollte nur noch danke sagen! Hat so geklappt!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de