Lösungsanzahl von x^2+1=0 (n) < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:03 Do 12.01.2012 | Autor: | briddi |
Aufgabe | Für [mm] f(x)\in \IZ[x] [/mm] sei [mm] P_f(n)=\#\{ \mbox{Lösungen von} f(x)\equiv 0\, mod\,n\}[/mm]
i) Zeige, dass [mm] P_f [/mm] multiplikativ ist.
ii) Für [mm] f(x)=x^2+1 [/mm] drücke [mm] P_f(n) [/mm] durch die Primzerlegung von n aus.
iii) Dasselbe für [mm] f(x)=x^2+x+1 [/mm] |
Hallo,
die erste Aufgabe habe ich schon fertig.
In der zweiten Aufgabe habe ich den ersten Teil dann direkt angewandt:
Sei [mm] n=p_1^{a_1}*...*p_k^{a_k}, f(x)=x^2+1
[/mm]
Dann ist [mm]P_f(n)=\#\{ \mbox{Lösungen von} f(x)\equiv 0\, mod\,n\}=\#\{ \mbox{Lösungen von}\, x^2+1\equiv 0\, mod\,p^{a_1}\}*...*\#\{ \mbox{Lösungen von}\, x^2+1\equiv 0\, mod\,p^{a_k}\}[/mm]
Die Kongruenzen könnte man auch jeweils umformen zu [mm] x^2\equiv [/mm] -1 mod [mm] p^{a_i}. [/mm] Das heißt man muss bestimmen, "wie oft" -1 jeweils ein Quadrat ist.
Ich hab mir schon einige Beispiele aufgeschrieben, aber ich finde irgendwie keine Regelmäßigkeit. Und ich kann mich auch an keine Formel erinnern, die so etwas angibt.
Kann mir jemand einen Tipp geben?
Zur dritten Aufgabe bin ich noch nicht gekommen, die geht vermutlich dann ähnlich wie die zweite, also eine nach der anderen...
Vielen Dank,
briddi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:55 Do 12.01.2012 | Autor: | felixf |
Moin!
> Für [mm]f(x)\in \IZ[x][/mm] sei [mm]P_f(n)=\#\{ \mbox{Lösungen von} f(x)\equiv 0\, mod\,n\}[/mm]
>
> i) Zeige, dass [mm]P_f[/mm] multiplikativ ist.
> ii) Für [mm]f(x)=x^2+1[/mm] drücke [mm]P_f(n)[/mm] durch die Primzerlegung
> von n aus.
> iii) Dasselbe für [mm]f(x)=x^2+x+1[/mm]
> Hallo,
> die erste Aufgabe habe ich schon fertig.
> In der zweiten Aufgabe habe ich den ersten Teil dann
> direkt angewandt:
> Sei [mm]n=p_1^{a_1}*...*p_k^{a_k}, f(x)=x^2+1[/mm]
> Dann ist
> [mm]P_f(n)=\#\{ \mbox{Lösungen von} f(x)\equiv 0\, mod\,n\}=\#\{ \mbox{Lösungen von}\, x^2+1\equiv 0\, mod\,p^{a_1}\}*...*\#\{ \mbox{Lösungen von}\, x^2+1\equiv 0\, mod\,p^{a_k}\}[/mm]
>
> Die Kongruenzen könnte man auch jeweils umformen zu
> [mm]x^2\equiv[/mm] -1 mod [mm]p^{a_i}.[/mm] Das heißt man muss bestimmen,
> "wie oft" -1 jeweils ein Quadrat ist.
> Ich hab mir schon einige Beispiele aufgeschrieben, aber
> ich finde irgendwie keine Regelmäßigkeit. Und ich kann
> mich auch an keine Formel erinnern, die so etwas angibt.
> Kann mir jemand einen Tipp geben?
Du willst also [mm] $f(p^e)$ [/mm] fuer Primzahl $p$ und $e [mm] \in \IN_{>0}$ [/mm] bestimmen.
Den Fall $p = 2$ musst du getrennt betrachten. Tipp: es ist $f(2) = 1$ und [mm] $f(2^e) [/mm] = 0$ fuer $e [mm] \ge [/mm] 2$.
Im Fall $p > 2$ haengt es nur von $p$ modulo 4 ab. Zeige das zuerst fuer $f(p)$ selber, und dann per Induktion nach $e$ fuer [mm] $f(p^e)$.
[/mm]
> Zur dritten Aufgabe bin ich noch nicht gekommen, die geht
> vermutlich dann ähnlich wie die zweite, also eine nach der
> anderen...
Sehe ich auch so...
LG Felix
|
|
|
|