www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Lösungsfundamentalsystem
Lösungsfundamentalsystem < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsfundamentalsystem: Wronski- Determinante
Status: (Frage) beantwortet Status 
Datum: 11:34 Mo 16.03.2009
Autor: Marcel08

Aufgabe
Wir betrachten die Differentialgleichung

[mm] y^{||}-\bruch{x+2}{x}y^{|}+\bruch{y}{x}=0 [/mm]


Welche der folgenden Funktionspaare bilden ein Fundamentalsystem dieser Gleichung?

(a) [mm] y_{1}(x)=e^{x}(x-2), y_{2}(x)=3x+6. [/mm]

(b) [mm] y_{1}(x)=e^{x}(x-2), y_{2}(x)=x-3. [/mm]

(c) [mm] y_{1}(x)=e^{x}(x-2), y_{2}(x)=4+2x-2e^{x}+xe^{x}. [/mm]

Hallo Matheraum,


um diese Aufgabe zu lösen, berechne ich zunächst die jeweiligen Wronski- Determinanten. Diese sind jedoch alle [mm] \not=0. [/mm] Somit sind alle Paare linear unabhängig.


Fraglich ist jedoch, ob sie auch Lösungen der Differentialgleichung sind. Um das herauszufinden, würde ich nun wie folgt vorgehen: (*)


1.) Jeweils y(x) durch [mm] y(x)=y_{1}(x)+y_{2}(x) [/mm] erhalten.

2.) Jeweils y(x) zweimal differenzieren

3.) Die entsprechenden Ableitungen jeweils in die Differentialgleichung
    einsetzen und vereinfachen.




Meine Fragen:


(1) Stimmt mein Vorgehen ab (*)?

(2) Wenn ja, gibt es noch eine schnellere Methode, dies zu überprüfen?

(3) Wenn nein, wie kann ich nun überprüfen, welche der drei
    Funktionenpaare tatsächlich Lösungen der Differentialgleichung sind?





Gruß, Marcel







        
Bezug
Lösungsfundamentalsystem: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Mo 16.03.2009
Autor: leduart

Hallo
1. Dein vorgehen ist richtig.
dass sie lin unabh. sind sieht man eigentlich direkt, auch ohne wronski.
Einsetzen und ueberpruefen ist sicher das schnellste, es sei denn du "siehst" direkt eine Fundamentalloesung, also loest die Dgl selbst.
Allerdings, sobald du eine Loesung hast, musst du die anderen nicht mehr ueberpruefen.
da y1 fuer alle gleich ist, also nur y2 ueberpruefen. wenn eine stimmt, zeigen, dass die anderen lin unabh. davon sind.
Gruss leduart

Bezug
                
Bezug
Lösungsfundamentalsystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Mo 16.03.2009
Autor: Marcel08

Okay, vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de