www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Lösungsmenge
Lösungsmenge < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsmenge: e-fkt.
Status: (Frage) beantwortet Status 
Datum: 20:10 Do 22.03.2007
Autor: hooover

Aufgabe
Berchene die Lösungsmenge

[mm] (2^x-5)^2=100 [/mm]

Hallo Leute,

ich hab da mal ne Frage. Ich zeig euch erstma lwas ich da gemacht habe.

[mm] (2^x-5)^2=100 [/mm]

[mm] (2^x-5)=\wurzel{100} [/mm]

[mm] 2^x=\wurzel{100}+5 [/mm]

so was mach ich jetzt?

sollte man hier den ln draufloslassen?

vielen DAnk für eure Hilfe hooover

        
Bezug
Lösungsmenge: erst zusammenfassen
Status: (Antwort) fertig Status 
Datum: 20:18 Do 22.03.2007
Autor: Loddar

Hallo hooover!


Bevor wir hier den "ln loslassen", sollten wir erst zusammenfassen.

Allerdings unterschlägst Du beim Wurzelziehen bereits eine mögliche Lösung:

[mm] $\left(2^x-5\right)^2 [/mm] \ = \ 100$

[mm] $\gdw$ $2^x-5 [/mm] \ = \ [mm] \red{\pm} [/mm] \ [mm] \wurzel{100} [/mm] \ = \ [mm] \pm [/mm] \ 10$

[mm] $\gdw$ $2^x [/mm] \ = \ [mm] \pm [/mm] 10 + 5$


Und nun kann man den ln loslassen ...


Gruß
Loddar


Bezug
                
Bezug
Lösungsmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Do 22.03.2007
Autor: hooover

vielen Dank für die Antwort,

ich bin mir aber nicht sicher wie das dann aussieht,

also

[mm]2^x \ = \ \pm 10 + 5[/mm]

so jetzt ln auf beiden Seiten, wobei die Rechte seite ja klar sein sollte

[mm] ln(\pm10+5) [/mm] wobei ja nur positive Werte für den ln definiert sind.

aber was geschieht mit

[mm] 2^x [/mm] wenn hier den ln anwende?

wird daraus 2x oder nur x oder etwa aber ln(2)x


vielen DAnk

Gruß hooover










Bezug
                        
Bezug
Lösungsmenge: Logarithmusgesetz
Status: (Antwort) fertig Status 
Datum: 20:40 Do 22.03.2007
Autor: Loddar

Hallo hooover!


Für [mm] $\ln\left(2^x\right)$ [/mm] musst Du eines der MBLogarithmusgesetze anwenden:     [mm] $\log_b\left(a^m\right) [/mm] \ = \ [mm] m*\log_b(a)$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de