www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lösungsmenge eines LGS in PRF
Lösungsmenge eines LGS in PRF < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsmenge eines LGS in PRF: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Sa 05.07.2014
Autor: gummibaum

Aufgabe
Gegeben ist das lineare Gleichungssystem

[m] A * x = \begin{pmatrix} 2 & 1 & 3 \\ 6 & 5 & 13 \\ -2 & -5 & -11 \\ \end{pmatrix} * x = \begin{pmatrix} 1 \\ 5 \\ \mu \end{pmatrix} [/m]

Bestimmen Sie die Lösungsmenge in Abhängigkeit von [mm] \mu. [/mm]
Falls diese nicht leer ist, geben Sie sie in Punkt-Richtung-Form an und deren geometrische Form.

Hallo zusammen.

Hier meine Lösung:
Mithilfe des Gauß-Algorithmus bringe ich das Gleichungssystem auf Dreiecksform (rechts-obere Dreiecksmatrix).
Dann steht da:

[m] A * \vec x = b \gdw \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 0 \\ \end{pmatrix} * \vec x = \begin{pmatrix} 1 \\ 2 \\ \mu + 5 \end{pmatrix} [/m]

Das Gleichungssystem hat 3 Gleichungen und 4 Unbekannte, also ist es unterbestimmt und es gibt wahrscheinlich keine eindeutige Lösung.
Nun soll das Gleichungssystem in Abhängigkeit von [mm] \mu [/mm] gelöst werden:

Wenn [mm] \mu \not= [/mm] -5 dann besitzt das Gleichungssystem keine Lösung, denn dann entsteht eine Zeile, in der links vom Gleichheitszeichen eine Null steht und rechts eine Zahl ungleich Null, d.h. eine falsche Aussage.

Wenn [mm] \mu [/mm] = -5 besitzt, dann entsteht eine ganze Nullzeile und das Gleichungssystem hat unendlich viele Lösungen.

Man setzt [mm] \mu [/mm] = -5 und erhält:

[m] A * \vec x = b \gdw \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 0 \\ \end{pmatrix} * \vec x = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} [/m]

Kann man bei der letzten Zeile des Systems: [m]0*x_1 + 0*x_2 + 0_x_3 = 0[/m] das [mm] x_3 [/mm] bspw. als [m]x_3 = t[/m] [m](t \in \IR)[/m] deklarieren
und dann einfach wieder durch Rückwärtseinsetzen das System lösen?

Wenn das so zulässig ist, dann ist mein Lösungsvektor [m]\vec x := \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -0.5t \\ 1-2t \\ t \end{pmatrix}[/m] oder in Parameter-Form bzw. Punkt-Richtung-Form
(geometrisches Objekt ist eine Gerade):

[m] g: \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t * \begin{pmatrix} -0.5 \\ -2 \\ 1 \end{pmatrix}[/m]

Ist das so korrekt?

Vielen Dank für eine Antwort!

        
Bezug
Lösungsmenge eines LGS in PRF: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Sa 05.07.2014
Autor: Diophant

Hallo,

> Gegeben ist das lineare Gleichungssystem

>

> [mm][/img]

>

> Bestimmen Sie die Lösungsmenge in Abhängigkeit von [mm]\mu.[/mm]
> Falls diese nicht leer ist, geben Sie sie in
> Punkt-Richtung-Form an und deren geometrische Form.
> Hallo zusammen.

>

> Hier meine Lösung:
> Mithilfe des Gauß-Algorithmus bringe ich das
> Gleichungssystem auf Dreiecksform (rechts-obere
> Dreiecksmatrix).
> Dann steht da:

>

> [mm][/img]

>

Soweit ist das richtig (wobei da oben wegen technischer Probleme die Matrix fehlt, aber sie steht ja in deiner Frage).

> Das Gleichungssystem hat 3 Gleichungen und 4 Unbekannte,
> also ist es unterbestimmt und es gibt wahrscheinlich keine
> eindeutige Lösung.

Nein, das siehst du falsch. Es ist ein 3x3-LGS und [mm] \mu [/mm] wird hier eher als Parameter gesehen. Sicher, man kann es auch so auffsssen wie du es getan hast, aber das ist m.A. nicht im Sinne der Aufgabenstellung.

> Nun soll das Gleichungssystem in Abhängigkeit von [mm]\mu[/mm]
> gelöst werden:

>

> Wenn [mm]\mu \not=[/mm] -5 dann besitzt das Gleichungssystem keine
> Lösung, denn dann entsteht eine Zeile, in der links vom
> Gleichheitszeichen eine Null steht und rechts eine Zahl
> ungleich Null, d.h. eine falsche Aussage.

Das ist richtig. [ok]

>

> Wenn [mm]\mu[/mm] = -5 besitzt, dann entsteht eine ganze Nullzeile
> und das Gleichungssystem hat unendlich viele Lösungen.

>

> Man setzt [mm]\mu[/mm] = -5 und erhält:

>

> [mm][/img]

>

> Kann man bei der letzten Zeile des Systems: [mm]0*x_1 + 0*x_2 + 0_x_3 = 0[/mm]
> das [mm]x_3[/mm] bspw. als [mm]x_3 = t[/mm] [mm](t \in \IR)[/mm] deklarieren
> und dann einfach wieder durch Rückwärtseinsetzen das
> System lösen?

>

> Wenn das so zulässig ist, dann ist mein Lösungsvektor
> [mm]\vec x := \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -0.5t \\ 1-2t \\ t \end{pmatrix}[/mm]
> oder in Parameter-Form bzw. Punkt-Richtung-Form
> (geometrisches Objekt ist eine Gerade):

>

> [mm]g: \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + t * \begin{pmatrix} -0.5 \\ -2 \\ 1 \end{pmatrix}[/mm]

>

> Ist das so korrekt?

Ich weiß nicht, ob du dich da nicht einfach vertippt hast. Ich erhalte nämlich (auche auch auf die Schreibweise!):

g: [mm] \vec{x}=\vektor{0\\1\\0}+t*\vektor{-1/2\\-2\\1} [/mm]


Gruß, Diophant

 

Bezug
                
Bezug
Lösungsmenge eines LGS in PRF: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:53 Sa 05.07.2014
Autor: gummibaum

Hi. Ich habe mich tatsächlich vertippt! ;)
Vielen Dank, dann weiß ich Bescheid...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de