www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Lösungszahlen
Lösungszahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungszahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:27 Sa 30.05.2009
Autor: Leni-H

Aufgabe
Seien f: [mm] \IR \to \IR; [/mm] x [mm] \mapsto [/mm] f(x) [mm] \in \IZ[X], [/mm] m [mm] \in \IN [/mm] und sei

[mm] \rho_{.}(m,f): \IZ \to \IN_{0}; [/mm] a [mm] \mapsto \rho_{a}(m,f) [/mm]

wobei [mm] \rho_{a}(m,f) [/mm] := #{x [mm] \in \IN_{0}; [/mm] x<m und f(x)+a [mm] \equiv [/mm] 0 mod m}

Zeigen Sie:
[mm] \summe_{a=0}^{m-1} \rho_{a}(m,f) [/mm] = m

Hallo,

ich habe Probleme bei obiger Aufgabe. Kann mir evtl. jemand einen Ansatz verraten wie ich hier dran gehen soll.

Vielen Dank!

LG!!

        
Bezug
Lösungszahlen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:53 So 31.05.2009
Autor: Leni-H

Weiß hier niemand was dazu?

Bezug
        
Bezug
Lösungszahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 So 31.05.2009
Autor: statler

Hallo + frohe Pfingsten!

> Seien f: [mm]\IR \to \IR;[/mm] x [mm]\mapsto[/mm] f(x) [mm]\in \IZ[X],[/mm] m [mm]\in \IN[/mm]
> und sei

Das scheint mir ganz schlecht hingeschrieben: Vermutlich soll f(X) [mm] \in \IZ[X] [/mm] sein, und f die von diesem Polynom durch Einsetzen induzierte Abb.

> [mm]\rho_{.}(m,f): \IZ \to \IN_{0};[/mm] a [mm]\mapsto \rho_{a}(m,f)[/mm]
>  
> wobei [mm]\rho_{a}(m,f)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= # { x [mm]\in \IN_{0};[/mm] x < m und f(x) + a

> [mm]\equiv[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

0 mod m }

>  
> Zeigen Sie:
>  [mm]\summe_{a=0}^{m-1} \rho_{a}(m,f)[/mm] = m

Jetzt soll x von 0 bis m-1 gehen, also gerade ein volles Restsystem mod m durchlaufen. und zählen tu ich, für wie viele Reste x jeweils f(x) [mm] \equiv [/mm] -a mod m ist. a (und damit auch -a) soll aber auch gerade ein volles Restsystem durchlaufen, dann kriege ich beim Zählen natürlich gerade m, weil jedes f(x) in genau einer dieser Restklassen liegt.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Lösungszahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 So 31.05.2009
Autor: Leni-H

Hm ja, mir ist das alles klar, wenn mans so in Worten erklärt. Aber wie kann man den Beweis denn mathematisch aufschreiben??

Bezug
                        
Bezug
Lösungszahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Di 02.06.2009
Autor: Leni-H

Kann mir jemand hier bei der mathematischen Formulierung helfen?

Bezug
                        
Bezug
Lösungszahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Di 02.06.2009
Autor: statler

Hi!

Für 0 [mm] \le [/mm] a [mm] \le [/mm] m-1 bilden die Mengen [mm] U_{a} [/mm] := {x [mm] \in \IN_{0}; [/mm] x < m und f(x) + a [mm] \equiv [/mm] 0 mod m} eine Partition (= disjunkte Zerlegung) der Menge U = {x [mm] \in \IN_{0}; [/mm] x < m}. Es gibt m Stück von ihnen, von denen einige evtl. leer sind. Je nach Ausbildungsstand ist das klar oder müßte mehr oder weniger detailliert bewiesen werden.
Dann ist aber $$m\ =\ |U|\ =\ [mm] \summe_{a} |U_{a}|$$ [/mm] klar.

Wenn du es verstanden hast, solltest du es auch ausdrücken können. Mach wenigstens einen Versuch. Bitte.
Gruß
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de