www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Log-Funktion & Ableitung
Log-Funktion & Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Log-Funktion & Ableitung: Ableitung von Log-Funktion und
Status: (Frage) beantwortet Status 
Datum: 17:13 Fr 13.10.2006
Autor: mmp

Aufgabe
zu 1. Auflösen nach X
zu 2. a. 1.Ableitung
      b. 2.Ableitung
      c. An welcher Stelle könnte die die Funktion ein relatives Extremum besitzen -> zugehöriger X0 Wert
      d. Handelt es sich um ein Maxi-oder Minimum?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

1. [mm] 3lg2^{2x+1} +2lg3^{3x-1} [/mm] = lg8

Hier bräuchte ich eine detaillierte Lösung, da ich Logarithmusfunktionen noch nicht behandelt habe.

2. f(x)=x ln x

Hier bräuchte ich ebenfalls eine detaillierte Lösung, da ich Logarithmusfunktionen noch nicht behandelt habe.

Vielen Dank für die Hilfe (im Voraus)

        
Bezug
Log-Funktion & Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Fr 13.10.2006
Autor: PStefan

Hi mmp,

zuerst einmal ein herzliches [willkommenmr]

> zu 1. Auflösen nach X
>  zu 2. a. 1.Ableitung
>        b. 2.Ableitung
>        c. An welcher Stelle könnte die die Funktion ein
> relatives Extremum besitzen -> zugehöriger X0 Wert
>        d. Handelt es sich um ein Maxi-oder Minimum?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> 1. [mm]3lg2^{2x+1} +2lg3^{3x-1}[/mm] = lg8
>  
> Hier bräuchte ich eine detaillierte Lösung, da ich
> Logarithmusfunktionen noch nicht behandelt habe.

ja, die bekommst du auch, aber du solltest dir vor Augen halten, dass es gewisse Forenregeln gibt! Nächstes Mal wäre es gut eigene Ideen mitzuposten, denn wir sind KEINE Lösungsmaschine.

Ich hoffe, dass dir die wichtigsten Rechenregeln bekannt sind, die brauchst du nämlich, um dieses Beispiel lösen zu können.

(6x+3)*lg(2)+(6x-2)*lg(3)=lg(8)
6x*lg(2)+3*lg(2)+6x*lg(3)-2*lg(3)=lg(8)
[mm] 6x*(lg(2)+lg(3))=lg(8)-lg(2^{3})+2*lg(3) [/mm]
6x*lg(6)=2*lg(3)
3x*lg(6)=lg(3)
[mm] x=\bruch{lg(3)}{3*lg(6)} [/mm]
x [mm] \approx [/mm] 0,2044

1. Aufgabe gelöst!


>
> 2. f(x)=x ln x
>
> Hier bräuchte ich ebenfalls eine detaillierte Lösung, da
> ich Logarithmusfunktionen noch nicht behandelt habe.

f(x)=x*ln(x)

Produktregel->
f'(x)=ln(x)+x*1/x=ln(x)+1

f''(x)=1/x

Extrema:
f'(x)=0 setzen

ln(x)+1=0
ln(x)=-1 [mm] /*e^x [/mm]
Xextremum=0,37

f''(Xextremum einsetzen)
1/0,37= 2,72 >0 ->Minimum

Minimum(0,368/-0,368)

>
> Vielen Dank für die Hilfe (im Voraus)

bitte

Grüße
Stefan


Bezug
                
Bezug
Log-Funktion & Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 Fr 13.10.2006
Autor: mmp

Vielen Dank für die schnelle Antwort, und ja mir ist bewusst, dass ich Lösungsansätze mitposten sollte, nur wie, wenn keine da sind :-). Die Rechenregeln kannte ich nicht, habe sie jetzt aber einigermaßen verstanden und hoffe damit zurecht zu kommen. MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de