www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Log-Gleichung
Log-Gleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Log-Gleichung: Aufgabe d)
Status: (Frage) beantwortet Status 
Datum: 12:48 Fr 01.03.2013
Autor: ralle79

Folgende Gleichung lässt mich verzweifeln:

30.000 x [mm] 1,045^n [/mm] = 4800 x [mm] (1,045^n-1 [/mm] / 1,045 - 1)

=   30.000 x 0,045 / 4800 = 1- [mm] 1/1,045^n [/mm]

Wo ist denn bitte [mm] 1,045^n [/mm] geblieben? Ich kann nicht vollständig nachvollziehen wie die erste Zeile umgestellt wurde!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Log-Gleichung: Aufgabe d)
Status: (Frage) beantwortet Status 
Datum: 12:49 Fr 01.03.2013
Autor: ralle79

Auf beigefügtem Bild [Dateianhang nicht öffentlich] seht ihr bei Aufgabe d) die Umstellung einer Gleichung.

Wo ist denn bitte [mm] 1,045^n [/mm] geblieben? Ich kann nicht vollständig nachvollziehen wie die erste Zeile umgestellt wurde!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Log-Gleichung: Doppelposting
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 Fr 01.03.2013
Autor: Diophant

Hallo und

[willkommenvh]

Sei so gut, und stelle jede Frage nur einmal. Und eine Rechnung als Bild hochzuladen ist auch denkbar ungünstig. Das erschwert nämlich potenziellen Helfern das Zitieren.

Tippe also Aufgabe und Rechnung besser ab.


Gruß, Diophant

Bezug
                
Bezug
Log-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Fr 01.03.2013
Autor: schachuzipus

Hallo ralle79 und erstmal herzlich [willkommenmr],

versuche, deine scans vor dem Einstellen in der Größe anzupassen.

So ein Plakat liest sich schlecht ;-)

Besser noch direkt eintippen, wir haben einen netten Formeleditor ...


> Auf beigefügtem Bild
>  
> Wo ist denn bitte [mm]1,045^n[/mm] geblieben? Ich kann nicht
> vollständig nachvollziehen wie die erste Zeile umgestellt
> wurde!!

Nun, da steht ja [mm]30000\cdot{}1,045^n=4800\cdot{}\frac{1,045^n-1}{1,045-1}[/mm]

Nun erstmal den Nenner rechterhand zusammenrechnen

[mm]\gdw 30000\cdot{}1,045^n=\frac{4800}{0,045}\cdot{}(1,045^n-1)[/mm]

Hier nun auf beiden Seiten mit [mm]\frac{0,045}{4800}[/mm] multiplizieren und durch [mm]1,045^n[/mm] teilen:

[mm]\gdw \frac{30000\cdot{}0,045}{4800}=\frac{1,045^n-1}{1,045^n}[/mm]

Nun erinnere dich an die Rechenregeln für die Bruchrechnung:

[mm]\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}[/mm]


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
        
Bezug
Log-Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:04 Fr 01.03.2013
Autor: Marcel

Hallo,

> Auf beigefügtem Bild [a][Bild Nr. 1 (fehlt/gelöscht)] seht ihr bei Aufgabe
> d) die Umstellung einer Gleichung.

wo ist das Bild?

Generell ist es besser (alleine schon aus Urheberrechtsgründen), die Aufgabe
abzutippen:

hier (klick!(
oder
[]hier (klick!)

findest Du Hilfen dazu!

Gruß,
  Marcel

Bezug
        
Bezug
Log-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Fr 01.03.2013
Autor: Marcel

Hallo,

> Folgende Gleichung lässt mich verzweifeln:
>  
> 30.000 x [mm]1,045^n[/mm] = 4800 x [mm](1,045^n-1[/mm] / 1,045 - 1)

wenn Du
$$30000 [mm] \cdot 1,045^n=4800\cdot \frac{1,045^n-1}{1,045-1}$$ [/mm]
meinst, dann musst Du den Bruch rechts so schreiben:
[mm] $$...*(1,045^n-1)/(1,045-1)$$ [/mm]

Denn [mm] $1,045^n-1/1,045 [/mm] -1$ bedeutet wegen "Punkt-vor-Strich":
[mm] $$1,045^n-\frac{1}{1,045}-1$$ [/mm]
(dabei ist [mm] $/\,$ [/mm] eigentlich als [mm] $:\,$ [/mm] gemeint, deswegen "Punkt-vor-Strich").

Nebenbei denke ich, dass Dein "x" als Multiplikationszeichen steht?!

> 30.000 x [mm]1,045^n[/mm] = 4800 x [mm](1,045^n-1[/mm] / 1,045 - 1)
> =   30.000 x 0,045 / 4800 = 1- [mm]1/1,045^n[/mm]

Das [mm] $\red{=}$ [/mm] soll wohl ein [mm] $\iff$ [/mm] sein?!
  

> Wo ist denn bitte [mm]1,045^n[/mm] geblieben? Ich kann nicht
> vollständig nachvollziehen wie die erste Zeile umgestellt
> wurde!!

$$30000 [mm] \cdot 1,045^n=4800\cdot \frac{1,045^n-1}{1,045-1}$$ [/mm]
[mm] $$\iff [/mm] 30000 [mm] \cdot 1,045^n=4800\cdot \frac{1,045^n-1}{0,045}\;\;\;\text{( wegen }1,045-1=0,045\text{)}$$ [/mm]
[mm] $$\iff: (\*)$$ [/mm]

Nun multipliziere die Gleichung mit
[mm] $$\frac{0,045}{4800}\cdot \frac{1}{1,045^n}$$ [/mm]
(das kannst Du natürlich auch Schritt für Schritt machen: Erst mit 0,045
multiplizieren, dann durch 4800 teilen und dann nochmal durch [mm] $1,045^n$ [/mm]
teilen).

Dann folgt
[mm] $$(\*)\iff \frac{30000*0,045}{4800}=\frac{1,045^n-1}{1,045^n}$$ [/mm]

Du wirst fertig sein, wenn Du noch
[mm] $$\frac{1,045^n-1}{1,045^n}=1-\frac{1}{1,045^n}$$ [/mm]
begründest; das bekommst Du aber sicher hin?

Tipp: [mm] $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$ [/mm] für $c [mm] \not=0\,.$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de