Log-fkt., Umkehrfkt.,ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem anderen Forum auf anderen Internetseiten gestellt.
Nunja.. Wie ich leider bemerken muss gehen die Übungsaufgaben bzgl. meiner am Dienstag anstehenden Klausur weit über das hinaus, was wir im Unterricht besprochen haben. Von daher stelle ich die Aufgaben nun in dieses Forum und hoffe auf Hilfe.
lineares Wachstum ist kein Problem, exponentielles Wachstum wurde bereits geklärt.
Nun zu den Aufgaben:
Logarithmusfunktionen:
a) Vereinfache
I) [mm] \bruch{2}{3} log r - \bruch{3}{2} log s [/mm]
Nun meine Fragen hierzu:
Wie habe ich die Brüche vor den log's zu behandeln?
Meine Idee war sie einfach zu multiplizieren und dann das Logarithmusgesetz anzuwenden, woraus sich [mm] log ( [mm] \bruch{r}{s} [/mm] ) ergeben würde und kann ich überhaupt dieses Gesetz anwenden, wenn keine Basis dort angegeben ist? Wie soll ich sowas lösen?
II) [mm] log(x²-y²) - 2log(x+y] [/mm]
Hier hatte ich überhaupt keine Ahnung und habe einfach probiert, was in
[mm] log x² - log y² - 2log x - 2log y = log ( \bruch{x²}{y²} ) - 4log ( \bruch {y}{y} ) [/mm] resultierte. Auch hier die Frage: was ist mit der Basis? Kann ich das so auflösen? Kann ich das wenn richtig weiter auflösen? und auch hier weiss ich nicht, wie ich die zahl vor dem log zu behandeln habe.
b) Wende die Logarithmusgesetze an:
I) [mm] log_b \wurzel[3]{ \bruch{a}{b} }
[/mm]
Hier habe ich keinerlei Ahnung und wüsste auch nicht, wie ich das anzugehen habe.
II) log [mm] \bruch{2a²b³}{c^4d^5}
[/mm]
Auch hier bin ich ratlos.
c) Bestimme die Lösungsmenge:
I) 5 * 4^(2x+1) = 26
keine Ahnung
II) 18 * 2^(7x-1) = 2 * 5^(2x-1)
dasselbe..
Aufgabe 4 Umkehrfunktionen
Entscheide ob die Funktion f auf dem maximalen Definitionsbereich umkehrbar ist. Schränke gegebenenfalls den Definitionsbereich so ein, dass die Funktion umkehrbar wird. Zeichnen sie f und [mm] \bar f [/mm] in dasselbe Koordinatensystem (mit gleicher Skalierung auf beiden Achsen).
[mm] f(x) = \bruch{1}{x} ; x \in \IR \ {0} [/mm]
Wir haben nie Brüche umgekehrt.. habe da auch keinen Ansatz zu
Aufgabe 5 Ableitung einer Exponentialfunktion
a) Zeichnen sie den Graphen zu [mm] [mm] f_3,5 [/mm] (x) = [mm] 3,5^x [/mm] , x [mm] \in \IR [/mm] in ein Koordinatensystem mit der Einheit 2,5cm auf beiden Achsen. Zeichnen sie darunter (in ein Koordinatensystem mit gleicher Skalierung) den Graphen der Ableitungsfunktion, indem sie nach augenmaß an mehreren Stellen des Graphen Tangenten anlegen und deren Steigung bestimmen. Äußern sie eine Vermutung für die Ableitung.
meine probleme:
Hat die 3,5 bei [mm] f_3,5 [/mm] eine besondere Bedeutung? (die 5 soll genau so groß wie die drei sein und auf selber ebene, hab ich nur nicht richtig hinbekommen).. Wenn ja, welche? Wie soll ich anhand von Tangenten eine Ableitungsfunktion erstellen???
b) Beweisen sie ihre vermutung aus a) indem sie allgemein die ableitung für [mm] [mm] f_b [/mm] (x) = [mm] b^x [/mm] , b [mm] \in \IR [/mm] ^+ [mm] \{1}, [/mm] x [mm] \in \IR [/mm] bestimmen.
Auch hier ist die Bedeutung des b's beim f gefragt. Falls sie eine besondere Bedeutung hat, wie soll ich die Ableitung dann bestimmen??
Ich hoffe, dass mir jemand helfen kann, denn sonst bin ich ziemlich geliefert.
danke schnmal im voraus
|
|
|
|
Hallo Harlecquinn,
Ich denke, Du hättest diese ganzen Aufgaben auch in mehreren Frage-Artikeln hier hineinstellen können. Das wäre auch für dich (und für uns) etwas übersichtlicher. Im Moment kann ich dir leider nur einige Hinweise geben.
> a) Vereinfache:
> I) [mm]\bruch{2}{3} \log r - \bruch{3}{2} \log s[/mm]
> Nun meine Fragen hierzu:
> Wie habe ich die Brüche vor den log's zu behandeln?
> Meine Idee war sie einfach zu multiplizieren und dann das
> Logarithmusgesetz anzuwenden, woraus sich [mm] $\log\left(\bruch{r}{s}\right)$ [/mm] ergeben würde
Das geht nicht. Hier könntest Du die Brüche in die Logarithmen ziehen, und dann vielleicht noch alles auf einen Bruchstrich im Logarithmus bringen.
[mm]\bruch{2}{3} \log r - \bruch{3}{2} \log s = \log\left(r^{\frac{2}{3}}\right) - \log\left(s^{\frac{3}{2}}\right) = \log\left(\frac{r^{\frac{2}{3}}}{s^{\frac{3}{2}}}\right)[/mm]
> und kann ich überhaupt dieses Gesetz anwenden, wenn keine Basis dort
> angegeben ist?
Ja, die Logarithmus-Gesetze gelten für beliebige Basen.
> II) [mm]log(x²-y²) - 2log(x+y][/mm]
> Hier hatte ich überhaupt keine Ahnung und habe einfach probiert, was in
> [mm]log x² - log y² - 2log x - 2log y = log ( \bruch{x²}{y²} ) - 4log (
> \bruch {y}{y} )[/mm] resultierte.
Das ist im Allgemeinen falsch. Denn angenommen es gelte allgemein:
[mm] $\log_c\left(a + b\right) [/mm] = [mm] \log_c [/mm] a + [mm] \log_c [/mm] b [mm] \gdw c^{\log_c\left(a + b\right)} [/mm] = [mm] c^{\log_c a + \log_c b} \gdw [/mm] a + b = [mm] c^{\log_c a}c^{\log_c b} [/mm] = a*b$. Nun ist zwar $2 + 2 = 2*2$, jedoch z.B. $3 + 4 [mm] \ne [/mm] 3*4$. Damit gilt das nicht im Allgemeinen!
Ich denke, Du solltest Dir generell mal die Logarithmusgesetze ansehen.
Grüße
Karl
|
|
|
|
|
Danke für den Link.. der hat mir besser geholfen als das, was wir im unterricht gemacht haben, denk ich (gruß an die mathelehrerin)
Gemäß den Regeln ist
[mm] \bruch{2}{3} log r - \bruch {3}{2} log s = log ( \bruch{r^( \bruch{2}{3})}{s^ \bruch[3}{2} [/mm]
und
[mm] log (x²-y²) - 2log (x+y) = log ( \bruch{x²-y²}{x²+2xy+y²} ) [/mm] oder hab ich deine angabe, wie man die zahlen vor dem log betrachten soll falsch rezipiert?
des weiteren ist dann [mm] log_b \wurzel[3]{ \bruch{a}{b} } = \bruch { log_b ( \bruch{a}{b} ) }{ 3 } [/mm]
uuuund log [mm] \bruch{2a²b³}{c^4 d^5} [/mm] = log 2a²b³ - log [mm] c^4 d^5 [/mm] [/mm]
zur Gleichung:
[mm] 5 * 4^(2x+1) = 26 \gdw 4^(2x+1) = 5,2 \gdw 2x+1 = log_4 5,2 \gdw 2x+1 = \bruch{ln 5,2}{ln 4} \gdw x=0,09462... [/mm]
bei der anderen gleichung bin ich noch am grübeln..
Für die anderen sachen brauch ich übrigens noch hilfe ;)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:07 Sa 17.09.2005 | Autor: | leduart |
Hallo
> [mm]\bruch{2}{3} log r - \bruch {3}{2} log s = log ( \bruch{r^( \bruch{2}{3})}{s^ \bruch[3}{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
richtig, besser : log ( \wurzel[3]{\bruch{r^{2}}{s^ {3}}[/mm]
>
> [mm]log (x²-y²) - 2log (x+y) = log ( \bruch{x²-y²}{x²+2xy+y²} )[/mm]
auch richtig, aber [mm] \bruch{x²-y²}{x²+2xy+y²} [/mm] kann man noch kürzen da
x²-y²=(x+y)*(x-y)
> oder hab ich deine angabe, wie man die zahlen vor dem log
> betrachten soll falsch rezipiert?
>
> des weiteren ist dann [mm]log_b \wurzel[3]{ \bruch{a}{b} } = \bruch { log_b ( \bruch{a}{b} ) }{ 3 }[/mm]
auch richtig, aber nicht weit genug vereinfacht:
[mm]log_b \wurzel[3]{ \bruch{a}{b} }=\bruch{1}{3}*log_b a - \bruch{1}{3}*log_b b=\bruch{1}{3}*log_b a - \bruch{1}{3}[/mm]
> uuuund log [mm]\bruch{2a²b³}{c^4 d^5}[/mm] = log 2a²b³ - log [mm]c^4 d^5[/mm][/mm]
richtig, wobei man noch in 4 Summanden zerlegen und die Hochzahlen dann rausholen kann!
> zur Gleichung:
>
> [mm]5 * 4^(2x+1) = 26 \gdw 4^(2x+1) = 5,2 \gdw 2x+1 = log_4 5,2 \gdw 2x+1 = \bruch{ln 5,2}{ln 4} \gdw x=0,09462...[/mm]
auch richtig. den Umweg über [mm] loo_4 [/mm] würd ich nicht gehen, sondern gleich beide Seiten mit ln oder lg logarithmieren.
Zu 4.
Umkehrung von 1/x ist wieder 1/x: nimm ne Zahl 3, nimm 1/3. Wie komm ich wieder bei 3 an? 1/(1/3)! Ausserdem kannst du es am Graph der Fkt sehen:Umkehrfkt vertauscht x und y Achse, d.h. Spiegelung an der Winkelhalbierenden im 1. Quadranten gibt die Umkehrfkt.
Zu 5.
Steigung der Tangente =Wert der Ableitung. Wenn du also bei x=0 die Steigung 1,2 abliest so ist f'(0)=1,2 usw.
wenn du [mm] 3.5=e^{ln3.5} [/mm] und [mm] 3.5^{x}=e^{x*ln3.5} [/mm] schreibst ist es vielleicht leichter die Fkt zu zeichnen.
das b unten an f sagt nur, dass f davon abhängt, welche Zahl man für b einsetzt. hat wenn du dir b fest vorstellst keine Bedeutung. Nur wenn du ein Bsp. angibst b=2 dann musst du die 2 halt unten an das f schreiben.
Gruss leduart
|
|
|
|
|
Ok habe ich soweit alles verstanden, nur bei aufgabe 3 c) II) hab ich probleme die richtig hinzukriegen.. ich weiß nicht, wie ich da umformen kann/soll und wie ich 2 hochgestellt terme dann berechnen soll, die unterschiedliche basen haben..
Bei Aufgabe 5 komm ich momentan auch nicht weiter..
ich hab den graphen gezeichnet, einige tangenten angelegt und festgestellt, dass der y wert der tangente die steigung angibt, da x - 1 die nullstelle der tangente ist, doch wie soll ich das durch die ableitung von [mm] f_b (x) = b^x[/mm] beweisen. Bei der Ableitung krieg ich nämlich [mm] f ' (x) = [mm] b^x \limes_{h\rightarrow\0} \bruch{ b^h - 1 }{ h } [/mm] raus..
thnx in advance
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:49 So 18.09.2005 | Autor: | clwoe |
Hallo,
zu der zweiten Gleichung bei der 3 c) kann ich dir helfen, dein zweites Problem kann ich dir nicht lösen weil ich da nicht so eingelesen bin.
Ich zeig dir einfach mal die zweite Gleichung, die gar nicht so kompliziert ist wie sie aussieht:
[mm] $18*2^{7x-1}=2*5^{2x-1}$
[/mm]
[mm] $\ln\left(18*2^{7x-1}\right) [/mm] = [mm] \ln\left(2*5^{2x-1}\right)$
[/mm]
[mm] $\ln [/mm] 18 + [mm] \ln\left(2^{7x-1}\right) [/mm] = [mm] \ln [/mm] 2 + [mm] \ln\left(5^{2x-1}\right)$
[/mm]
[mm] $\ln [/mm] 18 - [mm] \ln [/mm] 2 = [mm] \ln\left(5^{2x-1}\right) [/mm] - [mm] \ln\left(2^{7x-1}\right)$
[/mm]
[mm] $\ln\left(\bruch{18}{2}\right) [/mm] = [mm] \left(2x-1\right)\ln [/mm] 5 - [mm] \left(7x-1\right)\ln [/mm] 2$
[mm] $\ln [/mm] 9 = [mm] 2*x*\ln [/mm] 5 - [mm] \ln [/mm] 5 - [mm] \left(7*x*\ln 2 - \ln 2 \right)$
[/mm]
[mm] $\ln [/mm] 9 = [mm] 2*x*\ln [/mm] 5 - [mm] \ln [/mm] 5 - [mm] 7*x*\ln [/mm] 2 [mm] +\ln [/mm] 2$
[mm] $\ln [/mm] 9 + [mm] \ln [/mm] 5 - [mm] \ln [/mm] 2 = [mm] 2*x*\ln [/mm] 5 [mm] -7*x*\ln [/mm] 2$
[mm] $\ln [/mm] 9 + [mm] \ln [/mm] 5 - [mm] \ln [/mm] 2 = [mm] x\left(2\ln 5 - 7\ln 2\right)$
[/mm]
[mm] $\bruch{\ln 9 + \ln 5 - \ln 2}{2\ln 5 - 7\ln 2} [/mm] = x$
$x [mm] \approx -1.9064427\ldots$
[/mm]
Ich hoffe es ist jetzt klarer für dich geworden.
Gruß,
clwoe
|
|
|
|
|
Ja, es ist jetzt definitiv verstanden worden.. Danke
Es gibt Lehrer, die sind zu inkompetent die Logarithmusgesetze und die jeweiligen Anwendungen zu vermitteln. Problematisch ist das Ganze, wenn noch nicht einmal damit im unterricht gerechnet wird.. naja.. danke auf jeden fall
Für Aufgabe 5 brauch ich jetzt nur noch erläuterungen
|
|
|
|
|
Hallo Harlecquinn!
Hast Du dir denn mal die einzelnen Werte der Tangentensteigungen ermittelt?
Diese Tangentensteigungen geben doch auch die Werte der Ableitungsfunktion [mm] $f_b'(x)$ [/mm] an.
Vergleiche diese nun mal mit den zugehörigen Funktionswerten [mm] $f_b(x)$ [/mm] .
(Tipp: Einfach mal den Quotienten [mm] $\bruch{f_b'(x_0)}{f_b(x_0)}$ [/mm] betrachten!)
Kennst Du denn die Ableitung zur e-Funktion mit der Basis $e_$ ($e_$ : Euler-Zahl mit $e \ [mm] \approx [/mm] \ 2,71828$) ??
Für diese Funktion gilt doch: [mm] $\left( \ e^x \ \right)' [/mm] \ = \ [mm] e^x$
[/mm]
Nun kann man die allgemeine Exponetialfunktion zur Basis $b_$ folgendermaßen darstellen:
[mm] $b^x [/mm] \ = \ [mm] \left(e^{\ln(b)}\right)^x [/mm] \ = \ [mm] e^{\ln(b)*x}$
[/mm]
Nun kann man die allgemeine Formel über die Kettenregel herleiten ...
Gruß vom
Roadrunner
|
|
|
|