www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Log. Spirale parametrisieren
Log. Spirale parametrisieren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Log. Spirale parametrisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Mi 20.06.2012
Autor: gaylussac0815

Aufgabe
Die logarithmische Spirale [mm] \gamma(t):=e^{ct}*e^{it}, c\not=0, c\in\IR, [/mm] schneidet jeden Halbstrahl, der von 0 ausgeht, unter dem Winkel [mm] \alpha=arctan(1/c). [/mm] Im Fall c > 0 ist [mm] \gamma|(-\infty,0) [/mm] rektifizierbar. Welche Länge hat dieser Teil?

Hallo zusammen,

ich versuche diese Aufgabe zu bearbeiten, scheitere aber an der Berechnung von [mm] \parallel\gamma'\parallel. [/mm]

Zunächst habe ich die Parametrisierung ins reelle überführt:

[mm] \gamma(t):=e^{ct}*e^{it}=e^{ct}*\vektor{cos t \\ sin t} [/mm]

Folgendes habe ich versucht:
[mm] \integral_{-\infty}^{0}{\parallel\gamma'(t)\parallel dt}=[e^{ct}]^0_-\infty=1-\limes_{t\rightarrow-\infty}e^{ct} [/mm] (Sorry wegen den Grenzen, weiß nicht wie man die vernünftig hinkriegt)

Ist das so korrekt?
Irgendwie traue ich meinem Vorgehen nicht, weil ich die Aufgabenstellung nicht 100% verstehe:

1) Was bedeutet [mm] \gamma|(-\infty,0) [/mm] ? Die Kurve ohne diesen Bereich?
2) Ich habe nirgends [mm] \alpha=arctan(1/c) [/mm] verwendet, das bereitet mir Unmut...

Bin für Antworten und Denkanstöße sehr erfreut!

        
Bezug
Log. Spirale parametrisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Mi 20.06.2012
Autor: Al-Chwarizmi


> Die logarithmische Spirale [mm]\gamma(t):=e^{ct}*e^{it}, c\not=0, c\in\IR,[/mm]
> schneidet jeden Halbstrahl, der von 0 ausgeht, unter dem
> Winkel [mm]\alpha=arctan(1/c).[/mm] Im Fall c > 0 ist
> [mm]\gamma|(-\infty,0)[/mm] rektifizierbar. Welche Länge hat dieser
> Teil?
>  Hallo zusammen,
>  
> ich versuche diese Aufgabe zu bearbeiten, scheitere aber an
> der Berechnung von [mm]\parallel\gamma'\parallel.[/mm]
>  
> Zunächst habe ich die Parametrisierung ins reelle
> überführt:
>  
> [mm]\gamma(t):=e^{ct}*e^{it}=e^{ct}*\vektor{cos t \\ sin t}[/mm]
>  
> Folgendes habe ich versucht:
>  [mm]\integral_{-\infty}^{0}{\parallel\gamma'(t)\parallel dt}=[e^{ct}]^0_-\infty=1-\limes_{t\rightarrow-\infty}e^{ct}[/mm]
> (Sorry wegen den Grenzen, weiß nicht wie man die
> vernünftig hinkriegt)

Du müsstest das Tiefgestellte, also  [mm] -\infty [/mm] , zwischen geschweifte Klammern setzen !
  

> Ist das so korrekt?

Nein.

Hallo gaylussac0815,

um die Integration durchführen zu können, müsstest du
erst einmal die Ableitung [mm] \gamma'(t) [/mm] und deren Betrag [mm] |\gamma'(t)| [/mm]
berechnen !


> Irgendwie traue ich meinem Vorgehen nicht, weil ich die
> Aufgabenstellung nicht 100% verstehe:
>  
> 1) Was bedeutet [mm]\gamma|(-\infty,0)[/mm] ? Die Kurve ohne diesen
> Bereich?

Das Teilstück der Kurve für negative reelle t-Werte.

>  2) Ich habe nirgends [mm]\alpha=arctan(1/c)[/mm] verwendet, das
> bereitet mir Unmut...
>  
> Bin für Antworten und Denkanstöße sehr erfreut!

LG   Al-Chwarizmi


Bezug
                
Bezug
Log. Spirale parametrisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Do 21.06.2012
Autor: gaylussac0815


> > Die logarithmische Spirale [mm]\gamma(t):=e^{ct}*e^{it}, c\not=0, c\in\IR,[/mm]
> > schneidet jeden Halbstrahl, der von 0 ausgeht, unter dem
> > Winkel [mm]\alpha=arctan(1/c).[/mm] Im Fall c > 0 ist
> > [mm]\gamma|(-\infty,0)[/mm] rektifizierbar. Welche Länge hat dieser
> > Teil?
>  >  Hallo zusammen,
>  >  
> > ich versuche diese Aufgabe zu bearbeiten, scheitere aber an
> > der Berechnung von [mm]\parallel\gamma'\parallel.[/mm]
>  >  
> > Zunächst habe ich die Parametrisierung ins reelle
> > überführt:
>  >  
> > [mm]\gamma(t):=e^{ct}*e^{it}=e^{ct}*\vektor{cos t \\ sin t}[/mm]
>  
> >  

> > Folgendes habe ich versucht:
>  >  [mm]\integral_{-\infty}^{0}{\parallel\gamma'(t)\parallel dt}=[e^{ct}]^0_-\infty=1-\limes_{t\rightarrow-\infty}e^{ct}[/mm]
> > (Sorry wegen den Grenzen, weiß nicht wie man die
> > vernünftig hinkriegt)
>  
> Du müsstest das Tiefgestellte, also  [mm]-\infty[/mm] , zwischen
> geschweifte Klammern setzen !
>    
> > Ist das so korrekt?
>  
> Nein.
>
> Hallo gaylussac0815,
>  
> um die Integration durchführen zu können, müsstest du
>  erst einmal die Ableitung [mm]\gamma'(t)[/mm] und deren Betrag
> [mm]|\gamma'(t)|[/mm]
>  berechnen !

Das habe ich doch getan! Wozu brauche ich die Information des Schnittwinkels?

>  
>
> > Irgendwie traue ich meinem Vorgehen nicht, weil ich die
> > Aufgabenstellung nicht 100% verstehe:
>  >  
> > 1) Was bedeutet [mm]\gamma|(-\infty,0)[/mm] ? Die Kurve ohne diesen
> > Bereich?
>  
> Das Teilstück der Kurve für negative reelle t-Werte.
>  
> >  2) Ich habe nirgends [mm]\alpha=arctan(1/c)[/mm] verwendet, das

> > bereitet mir Unmut...
>  >  
> > Bin für Antworten und Denkanstöße sehr erfreut!
>
> LG   Al-Chwarizmi
>  


Bezug
                        
Bezug
Log. Spirale parametrisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:56 Sa 23.06.2012
Autor: Leopold_Gast

Es gilt

[mm]\gamma(t) = \operatorname{e}^{(c + \operatorname{i})t} \, , \ \ \gamma'(t) = (c + \operatorname{i}) \operatorname{e}^{(c + \operatorname{i})t}[/mm]

Daher ist

[mm]\left| \gamma'(t) \right|^2 = \gamma'(t) \cdot \overline{\gamma'(t)} = (c + \operatorname{i}) \operatorname{e}^{(c + \operatorname{i})t} \cdot \, (c - \operatorname{i}) \operatorname{e}^{(c - \operatorname{i})t} = \left( c^2 + 1 \right) \operatorname{e}^{2ct}[/mm]

Und die Sache mit dem Winkel soll vermutlich nur "zur Allgemeinbildung beitragen". Immerhin ist das eine besondere Eigenschaft der Kurve.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de