www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Logarithmen und Gleichungen
Logarithmen und Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen und Gleichungen: Löse die Gleichung
Status: (Frage) beantwortet Status 
Datum: 18:47 Mo 20.12.2004
Autor: R03N3

Bitte helft mir ich habe ein Problem bei der Lösung der Folgenden Gleichung

[mm] 7^{3x+2}=10^{x} [/mm]

Die Aufgabe soll mit dem Logarithmus gelöst werden ,also |*lg()
Das Ergebnis  [mm] \approx-1,100894 [/mm]

Ich wäre euch für eine Antwort sehr dankbar da ich bald eine Arbeit über diese Themen schreibe.

Mein Problem bei der Aufgabe ist ,dass ich den Weg nicht hinbekomme der zu -1,100894 führt.

Danke im Vorraus

        
Bezug
Logarithmen und Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Mo 20.12.2004
Autor: cremchen

Halli hallo!

> [mm]7^{3x+2}=10^{x} [/mm]
>  
> Die Aufgabe soll mit dem Logarithmus gelöst werden ,also
> |*lg()
>  Das Ergebnis  [mm]\approx-1,100894 [/mm]

Wenn du solche Aufgaben hast, lohnt sich ein Blick in unsere tolle Mathebank!
Hier findest du die für diese Aufgabe wichtigen  MBLogarithmusgesetz und kommst mit denen sicher zum Ziel!

Wenn nicht, dann melde dich doch noch einmal, und sag uns wo du hängen bleibst!

Liebe Grüße
Ulrike

Bezug
                
Bezug
Logarithmen und Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Mo 20.12.2004
Autor: R03N3

also da mir die Gesetze nicht wirklich gehlfen haben trotzdem danke ; )
schreibe ich jetzt auf ,wie ich die Aufgabe rechnen würde:
[mm] 7^{3x+2}=10^{x} [/mm]
(3x+2)*lg(7)=x*lg(10)

danach bin ich mir nicht mehr sicher, was ich machen soll.

(3x+2)/x=lg(10)/lg(7)

so komme ich dann allerdings nicht mehr weiter ; )

Bezug
                        
Bezug
Logarithmen und Gleichungen: weitere Schritte
Status: (Antwort) fertig Status 
Datum: 19:40 Mo 20.12.2004
Autor: Loddar

Hallo R03N3 !!

> [mm]7^{3x+2}=10^{x}[/mm]
> (3x+2)*lg(7)=x*lg(10)

[ok]
Nun versuchen wir etwas zu vereinfachen:

lg(10) = 1, da gilt [mm] $log_b(b) [/mm] = 1$

Dann verbleibt:
(3x+2)*lg(7) = x*1
(3x+2)*lg(7) = x

Durch das lg(7) sollten wir uns nicht weiter erschrecken lassen. Denn lg(7) ist eine konstante Zahl, d.h. ein fester Zahlenwert.
Wenn Du das in den Taschenrechner eingibst, erhältst Du: $lg(7) [mm] \approx [/mm] 0,845$.

Wir können also weiterrechnen als würde da z.B. eine 4 stehen.
Klammer ausmultiplizieren:
(3x+2)*lg(7) = x
3*lg(7)*x + 2*lg(7) = x  / -x  / -2*lg(7)
3*lg(7)*x - x = -2*lg(7)

Auf der linken Seite x ausklammern:
x*[3*lg(7) - 1] = -2*lg(7)   / : [3*lg(7) - 1]
$x = [mm] \bruch{-2*lg(7)}{3*lg(7) - 1}$ [/mm]

Diesen Ausdruck kann man nun wieder mit dem Taschenrechner ermitteln:
$x = [mm] \bruch{-2*lg(7)}{3*lg(7) - 1} \approx [/mm] -1,101$

Nun alle Klarheiten beseitigt ;-) ??

Grüße Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de