www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Logarithmen und O Notation
Logarithmen und O Notation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen und O Notation: Aufgabe verstehen
Status: (Frage) beantwortet Status 
Datum: 17:04 Fr 04.11.2016
Autor: pc_doctor

Aufgabe
Finden Sie für die folgenden Funktionen f(n) möglichst einfache Funktionen g(n) mit f(n) [mm] \in [/mm] O(g(n)). Alle Logarithmen verstehen sich zur Basis 2.

[mm] f_1(n) [/mm] = [mm] log((n!)^2) [/mm]


Hallo,

ich verstehe die Aufgabe nicht so richtig.

Soll ich hier beispielsweise [mm] f_1(n) [/mm] einfach umformen, bzw. anders aufschreiben, sodass [mm] (log((n!)^2) [/mm] < n ist ? Also [mm] "log((n!)^2) [/mm] wächst asymptotisch langsamer als n"


Vielen Dank im Voraus

        
Bezug
Logarithmen und O Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Sa 05.11.2016
Autor: Gonozal_IX

Hiho,

> ich verstehe die Aufgabe nicht so richtig.

dazu wäre es vielleicht hilfreich sich zu überlegen, was $f(n) [mm] \in [/mm]  O(g(n))$ bedeutet, nämlich:

[mm] $\limsup_{n\to\infty} \left|\frac{f(n)}{g(n)}\right| [/mm] < [mm] +\infty$ [/mm]

d.h. du sollst eine möglichst einfache Funktion finden (wobei ich die Formulierung unglücklich finde), so dass obiges gilt.

> Soll ich hier beispielsweise [mm]f_1(n)[/mm] einfach umformen

das wäre ein Anfang um mal etwas zu erkennen…

> bzw. anders aufschreiben, sodass [mm](log((n!)^2)[/mm] < n ist ?

Also  wenn du das hinbekämst, wärst du fertig, weil dann ja offensichtlich $g(n) = n$ gewählt werden kann.

> [mm]"log((n!)^2)[/mm] wächst asymptotisch langsamer als n"

das hast du bisher noch nicht gezeigt.
Aber Tipp: [mm] $(log((n!)^2) [/mm] = [mm] 2\log(n!) [/mm] = [mm] 2\sum_{k=2}^n\log(k)$ [/mm]

Gruß,
Gono

Bezug
        
Bezug
Logarithmen und O Notation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:40 Sa 05.11.2016
Autor: M.Rex

Hallo

Nur zur Sicherheit:

In dieser Diskussion geht es um [mm] \log((n^{2})!), [/mm] das kansnt du dann so nicht einfach umformen, wie es Gonozal_IX hier tut

Marius

Bezug
                
Bezug
Logarithmen und O Notation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Sa 05.11.2016
Autor: pc_doctor

Vielen Dank für die Antworten, habe es inzwischen gelöst. Schönes Wochenende.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de