www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Logarithmengesetze
Logarithmengesetze < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmengesetze: Korrektur/lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 01:41 Do 02.09.2010
Autor: druwwl

Aufgabe
Wende Logarithmengesetzte an.

14 c)

[mm] \log_{b}\bruch{2a^2b^3}{c^4d^5} [/mm]

Bestimme die Lösungsmenge:

16 g,h)

[mm] g)2^{4x-3}*4^{2x-+1}=8^x [/mm]
[mm] h)3^{3x+1}*9^{-2x}=27^x [/mm]





Hallo zusammen,

es gab bei 3 Aufgaben einige Probleme mit dem Lösunsgweg.ich habe einen Ansatz in schriflicher Form erstellt,den ich im dateianhang einfüge werde.

es wäre nett wenn einer mal drüberschauen könnte und mir einen Ansatz nennen könnte,wie ich es hätte besser machen können.


14c)

[][IMG]http://s5.directupload.net/images/100902/temp/rz78iq6m.jpg[/IMG]



16g)

[][IMG]http://s7.directupload.net/images/100902/temp/mwbopqc3.jpg[/IMG]


16h)

[][IMG]http://s10.directupload.net/images/100902/temp/noc4ijvr.jpg[/IMG]

lg,druwwl

        
Bezug
Logarithmengesetze: Antwort
Status: (Antwort) fertig Status 
Datum: 03:04 Do 02.09.2010
Autor: Teufel

Hi!

Am besten du schreibst die Formeln nächstes mal mit dem Editor hier im Forum, anstatt riesige handschriftliche Dateien zu posten. Das hat nichts mit deiner Handschrift zu tun, erleichtert aber den Helfern über deine Ansätze drüberzuschauen.

14c)
Da sind einige Fehler. Die Regeln, die du geschrieben hast, sind richtig, es ist also [mm] log_b(\bruch{x}{y})=log_b(x)-log_b(y), [/mm]
[mm] log_b(x*y)=log_b(x)+log_b(y) [/mm] und
[mm] log_b(x^r)=r*log_b(x). [/mm]
Außerdem gilt noch [mm] log_b(b)=1. [/mm]

Damit hast du also
$ [mm] \log_{b}\bruch{2a^2b^3}{c^4d^5} =log_b(2a^2)+log_b(b^3)-log_b(c^4)-log_b(d^5)$, [/mm] wenn man nur die ersten 2 Regeln verwendet (die Sachen mit den riesigen Bruchstrichen bei dir stimmen nicht!). Und bei dem 1. Summanden musst du aufpassen. Du kannst nicht [mm] log_b(2a^2) [/mm] zu [mm] 2log_b(2a) [/mm] machen. Stattdessen musst du vorher etwas umformen. [mm] log_b(2a^2)=log_b((\sqrt{2}a)^2)=2log_b(\sqrt{2}a). [/mm]
Streng genommen gilt auch noch [mm] log_b(x^r)=r*log_b(|x|) [/mm] für gerade r, aber ich weiß nicht, wie wichtig das in deinem Zusammenhang ist. Beispiel:
[mm] log_{10}((-10)^2)=log_{10}(100)=2, [/mm] aber [mm] 2*log_{10}(-10)=??? [/mm]

16g)
Ein Fehler direkt in der 1. Umformung.
Es ist z.B. [mm] 2^{4x-3}=2^{4*(x-\bruch{3}{4})}=16^{x-\bruch{3}{4}}. [/mm] Rechne das am besten nochmals durch! Mein Tipp bei der Aufgabe: Rechne alles mal auf Basis 2 runter. Das bietet sich an, weil 2, 4 und 8 Potenzen von 2 sind. Also mach aus [mm] 4^{...} [/mm] etwas mit [mm] 2^{...} [/mm] und bei [mm] 8^{...} [/mm] das gleiche. Damit lässt es sich schnell und einfach lösen, aber du kannst auch deinen Weg noch einmal (richtig) verfolgen.

16h)
Das gleiche wie davor. Und zusätzlich gilt, dass [mm] 3^2=9 [/mm] ist und nicht 6. ;)
Auch hier mein Vorschlag: 3, 9, 27 sind alles Potenzen von 3. Daher würde ich alle Potenzen zur Basis 3 darstellen.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de