www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Logarithmengleichungen
Logarithmengleichungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmengleichungen: Hilfe / Denkanstöße
Status: (Frage) beantwortet Status 
Datum: 16:48 Sa 26.11.2011
Autor: Masaky

Hey, meine Nachhilfeschülerin hat mir eben ein Paar Aufgaben zugemailt, die ich mit ihr am Monatg besprechen soll.

Jedoch habe ich bei einigen Aufgaben meine Schwierigkeiten und ich hoffe ihr könnt mir helfen, um mich vor einer Blamage zu bewahren... Logarithem sind einfach nicht mein Thema..

a.) ln(x-3) - ln(2x) = 1

b.) lg(3x) = 2 + lg(x-1)



also 1. wieso einfach ln und lg? und 2. wie bekomme ioch das x-3 da weg,... ln x - ln 3 ist ja wieder was anderes oder?


Viiiiiiiiiiiiiiielen Dank ür die Hilfe =)

        
Bezug
Logarithmengleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Sa 26.11.2011
Autor: M.Rex

Hallo

Mit [mm] \ln [/mm] ist der sogenante natürliche MBLogarithmus gemeint, also der Logarihmus zur Basis MBe, der eulerschen Zahl.

Mit [mm] \lg [/mm] ist der Dekadische Logaruthmus gemeint, zu Basis 10.

Zu deinen Aufgaben. Dort werden die MBLogarithmusgesetze benötigt.

a)
[mm] \ln(x-3)-\ln(2x)=1 [/mm]
[mm] \Leftrightarrow\ln\left(\frac{x-3}{2x}\right)=1 [/mm]
[mm] \Leftrightarrow\ln\left(\frac{x}{2x}-\frac{3}{2x}\right)=1 [/mm]
[mm] \Leftrightarrow\ln\left(\frac{1}{2}-\frac{3}{2x}\right)=1 [/mm]

Nun kannst du beide Seiten in den Exponenten der e-Funktion nehmen, dadurch wirst du den [mm] \ln [/mm] los. Also:

[mm] \ln\left(\frac{1}{2}-\frac{3}{2x}\right)=1 [/mm]
[mm] \Leftrightarrow \frac{1}{2}-\frac{3}{2x}=e^{1} [/mm]

b)
[mm] \lg(3x)=2+\lg(x-1) [/mm]
[mm] \Leftrightarrow\lg(3x)-\lg(x-1)=2 [/mm]
[mm] \Leftrightarrow\lg\left(\frac{3x}{x-1}\right)=2 [/mm]

Nun wieder du.

Marius


Bezug
                
Bezug
Logarithmengleichungen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:24 Sa 26.11.2011
Autor: Masaky

also zu 1.

0,5 - [mm] \bruch{3}{2x} [/mm] = e   /-0,5
- [mm] \bruch{3}{2x} [/mm] = e -0,5   / * 2x
-3    = (e-0,5) * 2x
-3 = 2ex -x
-2ex + x = 3
-4,43x = 3
x = 0,67

wenn das richtig wäre, wäre das nicht lösbar oder? wegen dem - beim ersten Logarithmus...aber ich vermute ich hab einen straken Fehler :(



zu 2.

[mm] \bruch{3x}{x-1} [/mm] = [mm] e^2 [/mm]
3x  = [mm] e^2 [/mm] (x-1)
3x = e^2x - [mm] e^2 [/mm]
3x - e^2x = [mm] -e^2 [/mm]
-3e^2x [mm] =-e^2 [/mm]
x = 1/3

Aber auch da bringt die Probe nichts...


Hilfe!!! ich hoffe ihr findet meine Fehler..
vielen dank und liebe grüße....


Bezug
                        
Bezug
Logarithmengleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Sa 26.11.2011
Autor: MathePower

Hallo Masaky,

> also zu 1.
>  
> 0,5 - [mm]\bruch{3}{2x}[/mm] = e   /-0,5
>  - [mm]\bruch{3}{2x}[/mm] = e -0,5   / * 2x
>  -3    = (e-0,5) * 2x
>  -3 = 2ex -x
>  -2ex + x = 3
>  -4,43x = 3
>  x = 0,67
>  


Hier hast Du ein "-" vergessen: [mm]x=\blue{-}0,67[/mm]


> wenn das richtig wäre, wäre das nicht lösbar oder? wegen
> dem - beim ersten Logarithmus...aber ich vermute ich hab
> einen straken Fehler :(
>  


Ausser einem Vorzeichenfehler hast Du keinen.
Daher ist es richtig, dass die Gleichung nicht lösbar ist.


>
>
> zu 2.
>
> [mm]\bruch{3x}{x-1}[/mm] = [mm]e^2[/mm]
>  3x  = [mm]e^2[/mm] (x-1)


Hier muss doch stehen:

[mm]3x = \red{10}^2 (x-1)[/mm]


>  3x = e^2x - [mm]e^2[/mm]
>  3x - e^2x = [mm]-e^2[/mm]
>  -3e^2x [mm]=-e^2[/mm]
>  x = 1/3
>  
> Aber auch da bringt die Probe nichts...
>  
>
> Hilfe!!! ich hoffe ihr findet meine Fehler..
>  vielen dank und liebe grüße....

>


Gruss
MathePower  

Bezug
                                
Bezug
Logarithmengleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Sa 26.11.2011
Autor: Masaky


>
> >
> >
> > zu 2.
> >
> > [mm]\bruch{3x}{x-1}[/mm] = [mm]e^2[/mm]
>  >  3x  = [mm]e^2[/mm] (x-1)
>  
>
> Hier muss doch stehen:
>  
> [mm]3x = \red{10}^2 (x-1)[/mm]
>  

Wo kommt denn jetzt die 10 her?!

> >  3x = e^2x - [mm]e^2[/mm]

>  >  3x - e^2x = [mm]-e^2[/mm]
>  >  -3e^2x [mm]=-e^2[/mm]
>  >  x = 1/3
>  >  
> > Aber auch da bringt die Probe nichts...
>  >  
> >
> > Hilfe!!! ich hoffe ihr findet meine Fehler..
>  >  vielen dank und liebe grüße....
>  >
>  
>
> Gruss
>  MathePower    


Bezug
                                        
Bezug
Logarithmengleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Sa 26.11.2011
Autor: MathePower

Hallo Masaky,

> > > zu 2.
> > >
> > > [mm]\bruch{3x}{x-1}[/mm] = [mm]e^2[/mm]
>  >  >  3x  = [mm]e^2[/mm] (x-1)
>  >  
> >
> > Hier muss doch stehen:
>  >  
> > [mm]3x = \red{10}^2 (x-1)[/mm]
>  >  
> Wo kommt denn jetzt die 10 her?!

>


Die "10" kommt vom dekadischen Logarithmus "lg".

  

> > >  3x = e^2x - [mm]e^2[/mm]

>  >  >  3x - e^2x = [mm]-e^2[/mm]
>  >  >  -3e^2x [mm]=-e^2[/mm]
>  >  >  x = 1/3
>  >  >  
> > > Aber auch da bringt die Probe nichts...
>  >  >  
> > >
> > > Hilfe!!! ich hoffe ihr findet meine Fehler..
>  >  >  vielen dank und liebe grüße....
>  >  >
>  >  
> >
> > Gruss
>  >  MathePower    
>


Gruss
MathePower

Bezug
                                                
Bezug
Logarithmengleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Sa 26.11.2011
Autor: Masaky

Okay langsam wird mir peinlich, aber noch eine "mini-frage"


3x = [mm] 10^2 [/mm] (x-1)
3x = 100x - 100
-97x = -100
x = 1,03

aber in der Gleichung passt das nicht?!?!

Bezug
                                                        
Bezug
Logarithmengleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Sa 26.11.2011
Autor: abakus


> Okay langsam wird mir peinlich, aber noch eine
> "mini-frage"
>  
>
> 3x = [mm]10^2[/mm] (x-1)
>  3x = 100x - 100
>  -97x = -100
>  x = 1,03
>  
> aber in der Gleichung passt das nicht?!?!

Hallo,
100/97 ist schließlich nicht 1,03 sondern [mm] \bruch{100}{97}. [/mm]
Deine grobe Rundung lässt sicher die Probe zu einem Fehlschlag werden.
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de