www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Logarithmieren (Gleichung)
Logarithmieren (Gleichung) < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmieren (Gleichung): Tipp
Status: (Frage) beantwortet Status 
Datum: 11:13 Di 26.02.2008
Autor: ShubNiggurath

Aufgabe
[mm] ln\bruch{9}{x} [/mm] - [mm] ln\bruch{x}{a} [/mm] = ln a      

Also ich bin jetzt schon etwas raus aus der materie und bräuchte hier mal etwas starthilfe wie ich an die aufgabe rangehe. Also wenn ich den ersten Schritt haben könnte wäre mir schon geholfen! Danke!

MfG Shub

        
Bezug
Logarithmieren (Gleichung): Logarithmusgesetze
Status: (Antwort) fertig Status 
Datum: 11:24 Di 26.02.2008
Autor: Roadrunner

Hallo Shub!


Verwende hier folgendes MBLogarithmusgesetz, um zusammenzufassen:

[mm] $$\log_b\left(\bruch{x}{y}\right) [/mm] \ = \ [mm] \log_b(x)-\log_b(y)$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Logarithmieren (Gleichung): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Di 26.02.2008
Autor: ShubNiggurath

würde somit nach umformung folgendes da stehen:

[mm] \log_b(9)-\log_b(x) [/mm] - [mm] \log_b(x)-\log_b(a) [/mm] = ln a ?

(wenn man das bejahen kann (was ich nicht glaube *g*) dann müsste ich ja eine gemeinsame basis finden, aber hier steh ich derzeit im wald, denn eine gemeinsame basis von variablen und zahlen?
(wie gesagt, bin hier etwas eingerostet)

Bezug
                        
Bezug
Logarithmieren (Gleichung): Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Di 26.02.2008
Autor: M.Rex

Hallo

Wenn du nach der Angabe umformst, erhältst du:

$ [mm] ln\bruch{9}{x} [/mm] $ - $ [mm] ln\bruch{x}{a} [/mm] $ = ln a  
[mm] \gdw \ln\left(\bruch{9}{x}:\bruch{x}{a}\right)=\ln(a) [/mm]
[mm] \gdw \ln\left(\bruch{9}{x}*\bruch{a}{x}\right)=\ln(a) [/mm]
[mm] \gdw \ln\left(\bruch{9a}{x²}\right)=\ln(a) [/mm]

Kommst du jetzt weiter?

Marius

Bezug
                                
Bezug
Logarithmieren (Gleichung): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Di 26.02.2008
Autor: ShubNiggurath

ah ich trottel - doppelbruch, kehrwert :D mist! DANKE schonmal für den hinweis!

Also wenn der letzte schritt dieser hier war:

$ [mm] \gdw \ln\left(\bruch{9a}{x²}\right)=\ln(a) [/mm]

dann müsste ich jetzt ja mit x² multiplizieren um den bruch aufzulösen, also
hätte ich dann stehen:

[mm] ln(9a)=\ln(a)*x² [/mm]

(sofern dass richtig ist, würde ich wie folgt weitermachen:
9a=ax² | : a
9=x² | (Wurzelziehen)
x= +/- 3

und dann überprüfen ob +/- 3 stimmt, richtig?

Bezug
                                        
Bezug
Logarithmieren (Gleichung): Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Di 26.02.2008
Autor: M.Rex


> ah ich trottel - doppelbruch, kehrwert :D mist! DANKE
> schonmal für den hinweis!
>  
> Also wenn der letzte schritt dieser hier war:
>
> $ [mm]\gdw \ln\left(\bruch{9a}{x²}\right)=\ln(a)[/mm]
>
> dann müsste ich jetzt ja mit x² multiplizieren um den bruch
> aufzulösen, also
>  hätte ich dann stehen:
>  
> [mm]ln(9a)=\ln(a)*x²[/mm]
>  
> (sofern dass richtig ist, würde ich wie folgt
> weitermachen:
>  9a=ax² | : a
>  9=x² | (Wurzelziehen)
>  x= +/- 3
>  
> und dann überprüfen ob +/- 3 stimmt, richtig?

Jein. Du kommst zwar aufs richtige Ergebnis, aber der Weg funktioniert nicht.

[mm] \ln\left(\bruch{9a}{x²}\right)=\ln(a) [/mm]
Jetzt mit e "verarbeiten"
[mm] e^{\ln\left(\bruch{9a}{x²}\right)}=e^{\ln(a)} [/mm]
[mm] \gdw \bruch{9a}{x²}=a [/mm]  
[mm] \gdw \bruch{9}{x²}=1 [/mm]
[mm] \gdw 9=x^{2} [/mm]
[mm] \gdw x=\pm3 [/mm]

Marius

Bezug
                                                
Bezug
Logarithmieren (Gleichung): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:02 Di 26.02.2008
Autor: ShubNiggurath

alles klar! besten dank :)

Bezug
                                                
Bezug
Logarithmieren (Gleichung): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Di 26.02.2008
Autor: maaan

Hallo Leute, wie mein Vorgänger habe ich eine Frage zu dieser Aufgabe. Die Lösungsmenge soll sein, 3. Wieso nicht -3?

MfG, Maaan

Bezug
                                                        
Bezug
Logarithmieren (Gleichung): Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Di 26.02.2008
Autor: MathePower

Hallo maaan,

[willkommenmr]

> Hallo Leute, wie mein Vorgänger habe ich eine Frage zu
> dieser Aufgabe. Die Lösungsmenge soll sein, 3. Wieso nicht
> -3?

Ganz einfach, weil der ln nur für Reelle Zahlen größer 0 definiert ist.

>  
> MfG, Maaan

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de