www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Logarithmische Spirale
Logarithmische Spirale < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmische Spirale: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:11 Mo 30.05.2005
Autor: Melli9181

Hallo!
Ich muss gleich dazu sagen, dass ich keinen eigenen Ansatz oder Lösungsversuch habe, aber vielleicht kann mir ja jemand einen Ansatz geben, so dass ich dann vielleicht mal überhaupt mit der Aufgabe anfangen kann!

Aufgabe:
Betrachten sie das Komplement der logarithmischen Spirale
D= [mm] \IC-(z=e^{t(t+i)};t \in \IR)-(0) [/mm]
a) Skizzieren sie das Gebiet D und untersuchen Sie, ob es einfach zusammenhängend ist.
b) Zeigen Sie, dass jede holomorphe Funktion auf D eine Stammfunktion besitzt.
c)Nach b) existiert ein Logarithmus auf D. Geben sie den Logarithmus auf D an, der auf dem reellen Intervall (1,e) durch
[mm] \integral_{1}^{x} [/mm] { [mm] \bruch{dt}{t}} [/mm]
gegeben ist.

Ich hoffe mir kann jemand helfen, damit ich wenigstens ein paar Punkte bekomme!
Danke!


        
Bezug
Logarithmische Spirale: Zeichnung
Status: (Antwort) fertig Status 
Datum: 16:27 Mo 30.05.2005
Autor: banachella

Hallo Melli!

Hast du zumindest schon mal versucht, $D$ zu zeichnen?
Das ist relativ einfach: Du benutzt ein "normales" Koordinatensystem, und benutzt die y-Achse als imaginäre Achse. Am besten zeichnest du erstmal [mm] $\{z=e^{t(t+i)}:\ t \in \IR \}$. [/mm]
Setz einfach mal ein paar $t$-Werte ein und zeichne den zugehörgen $z$-Wert in dein Koordinatensystem ein! So kannst du dir erstmal eine Vorstellung von $D$ machen... Und auch ein paar Punkte kassieren... [grins]
Für dem zweiten Teil solltest du eigentlich einen Satz aus der Funktionentheorie finden, der dir eine solche Stammfunktion liefert... Schließlich ist $D$ offen...

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de