Logarithmus bzw. exponentialfunktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo!
Hab eine, weiß nicht, viell. blöde Frage!!
Es ist ja im Prinzip egal ob man eine Exponetialgleichung mit dem natürlichen Logarithmus(Basis e),oder dem dekadischen Logarithmus (Basis 10) löst,oder!?
Warum aber? Es ist mir schon klar,dass bei beiden Fällen der gleiche bezug zwischen Exponential und Logarithmusfunktion besteht:
Nämlich: [mm] a^x=b [/mm] <=> x=alog von b wenn a [mm] \ne [/mm] {1} oder??
Steckt hier die Erklärung dafür??? Schöne Grüße Daniel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:14 Sa 14.08.2004 | Autor: | Hanno |
Hi Daniel.
Die Erklärung dafür kannst du dir schon mit der verbalen Definition des Logarithmus zu einer bestimmten Basis klar machen:
Der Logarithmus [mm]log_{a}(b)[/mm] gibt an, wie oft [mm]a[/mm] potenziert werden muss, damit diese Potenz [mm]b[/mm] ergibt.
Wenn du also deine Gleichung
[mm]a^x=b[/mm] lösen willst, dann kannst du einen beliebigen Logarithmus zur Basis [mm]q[/mm] anwenden, woraus folgt:
[mm]log_{q}(a^x)=log_{q}(b)[/mm]
Nun kann man immer das Logarithmengesetz
[mm]log_{q}(a^b)=b\cdot log_{q}(a)[/mm] anwenden (warum? [mm]q^{log_{q}(b)}=b\gdw (q^{log_{q}(b)})^p=b^p\gdw q^{p\cdot log_{q}(b)}=b^p\gdw p\cdot log_{q}{b}=log_{q}(b^p)[/mm])
anwenden, welches das gesuchte [mm]x[/mm] in der Gleichung freistellt.
Nun ist es möglich, nach [mm]x[/mm] umzustellen.
Mit welcher Basis du nun logarithmierst ist völlig irrelevant. Der einzige Unterschied besteht eben darin, dass, wenn [mm]x[/mm] im Term [mm]a^x[/mm] vorkommt, eine Logarithmierung zur Basis [mm]a[/mm] das [mm]log_{a}(a)=1[/mm] wegfallen lässt.
Dennoch kannst du über jede andere Logarithmierung auch zu deinem Ziel kommen.
Hat dir das weitergeholfen?
Gruß,
Hanno
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:53 So 15.08.2004 | Autor: | nitro1185 |
Ahh Danke!!!Dann bin ich doch nicht so falsch gelegen!!!
Gruß Daniel
|
|
|
|