www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Logarithmusfunktion
Logarithmusfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmusfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:00 Do 09.04.2009
Autor: itse

Aufgabe
Geben Sie die reele Lösungsmenge an

ln(x²-9) - [mm] \bruch{1}{2} [/mm] ln(x²+6x+9) = 1

Hallo Zusammen,

den Term kann man wie folgt auslösen:

ln(x²-9) - [mm] \bruch{1}{2} [/mm] ln(x²+6x+9) = 1
ln[(x-3)(x+3)] - [mm] \bruch{1}{2} [/mm] ln[(x-3)(x-3)] = 1

ln(x-3) + ln(x+3) - [mm] \bruch{[ln(x-3) + ln(x-3)]}{2} [/mm] = 1

[mm] \bruch{2 ln(x-3)+2 ln(x+3)}{2} [/mm] - [mm] \bruch{ln(x-3) - ln(x-3)}{2} [/mm] = 1

[mm] \bruch{2 ln(x-3)+2 ln(x+3) - ln(x-3) - ln(x-3)}{2} [/mm] = 1

[mm] \bruch{2 ln(x+3)}{2} [/mm] = 1

ln(x+3) = 1

[mm] e^{ln(x+3)} [/mm] = [mm] e^1 [/mm]

x+3 = e -> x = e - 3

Wenn ich dies jedoch in den Ausgangsterm einsetze, erhalte ich keine Lösung, da ln(x²-9) negativ wird. Was habe ich denn falsch gemacht?

Vielen Dank
itse



        
Bezug
Logarithmusfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 Do 09.04.2009
Autor: glie

Hallo,

> Geben Sie die reele Lösungsmenge an
>  
> ln(x²-9) - [mm]\bruch{1}{2}[/mm] ln(x²+6x+9) = 1
>  Hallo Zusammen,
>  
> den Term kann man wie folgt auslösen:
>  
> ln(x²-9) - [mm]\bruch{1}{2}[/mm] ln(x²+6x+9) = 1
>  ln[(x-3)(x+3)] - [mm]\bruch{1}{2}[/mm] ln[(x-3)(x-3)] = 1

Hier stimmts nicht: [mm] (x^2+6x+9)=(x\red{+}3)^2 [/mm]


>  
> ln(x-3) + ln(x+3) - [mm]\bruch{[ln(x-3) + ln(x-3)]}{2}[/mm] = 1
>  
> [mm]\bruch{2 ln(x-3)+2 ln(x+3)}{2}[/mm] - [mm]\bruch{ln(x-3) - ln(x-3)}{2}[/mm]
> = 1
>  
> [mm]\bruch{2 ln(x-3)+2 ln(x+3) - ln(x-3) - ln(x-3)}{2}[/mm] = 1
>  
> [mm]\bruch{2 ln(x+3)}{2}[/mm] = 1
>  
> ln(x+3) = 1
>  
> [mm]e^{ln(x+3)}[/mm] = [mm]e^1[/mm]
>  
> x+3 = e -> x = e - 3
>  
> Wenn ich dies jedoch in den Ausgangsterm einsetze, erhalte
> ich keine Lösung, da ln(x²-9) negativ wird. Was habe ich
> denn falsch gemacht?

Rechne nochmal mit meiner Verbesserung von oben nach.
Und beachte etwas ganz wichtiges:
Eine Gleichung hat eine DEFINITIONSMENGE!!
Hier musst du beachten, dass die Argumente der Logarithmen positiv sein müssen.

Es muss also gelten [mm] x^2-9>0 [/mm]
Fur welche x-Werte gilt das?

Und es muss gelten [mm] x^2+6x+9>0 [/mm]
Für welche x-Werte gilt das?

Was ist dann die Definitionsmenge?

Eine von dir bestimmte Lösung der Gleichung muss auf jeden Fall in der Definitionsmenge enthalten sein. Das musst du auch auf jeden Fall überprüfen.

Gruß Glie

>  
> Vielen Dank
>  itse
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de