www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Logarithmusfunktion
Logarithmusfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmusfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 So 12.12.2010
Autor: Frank_BOS

Aufgabe
Bestimmen Sie die Definitionsmenge und die Lösungsmenge der folgenden Logarithmusgleichungen:







[mm]\bruch{1}{2}ln_{a}2x - ln_{a}\bruch{x}{2} [/mm]

D= R^+ / {0}

[mm] ln_{a}\wurzel{2x} [/mm] - [mm] ln_{a}\bruch{x}{2} [/mm]


[mm] \bruch{\wurzel{2x}}{\bruch{x}{2}} [/mm]

[mm] \bruch{2x}{\bruch{x^2}{4}} [/mm]  

[mm] \bruch{8x}{x^2} [/mm]  
  
[mm] \bruch{8}{x} [/mm]

L = {}

Was ist meine Fehler? Lt. Musterlösung L = { 8 }


        
Bezug
Logarithmusfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 So 12.12.2010
Autor: Pappus

Guten Abend!

> Bestimmen Sie die Definitionsmenge und die Lösungsmenge
> der folgenden Logarithmusgleichungen:
>  
> [mm]\bruch{1}{2}ln_{a}2x - ln_{a}\bruch{x}{2} [/mm]
>  
> D= R^+ / {0}

Was ist [mm] $\ln_a(x)$ [/mm] ?

Welche Gleichung?

>  
> [mm]ln_{a}\wurzel{2x}[/mm] - [mm]ln_{a}\bruch{x}{2}[/mm]
>  
>
> [mm]\bruch{\wurzel{2x}}{\bruch{x}{2}}[/mm]

Wieso? Hast Du entlogarithmiert? Wie? Und die andere Seite der Gleichung?

>
> [mm]\bruch{2x}{\bruch{x^2}{4}}[/mm]  
>
> [mm]\bruch{8x}{x^2}[/mm]  
>
> [mm]\bruch{8}{x}[/mm]
>  
> L = {}
>  
> Was ist meine Fehler? Lt. Musterlösung L = { 8 }
>  

Poste bitte die ganze Gleichung! (Übrigens [mm] $a^0 [/mm] = 1$ )

Salve

Pappus

Bezug
                
Bezug
Logarithmusfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 So 12.12.2010
Autor: Frank_BOS

Guten Abend!

> Bestimmen Sie die Definitionsmenge und die Lösungsmenge
> der folgenden Logarithmusgleichungen:
>  
> $ [mm] \bruch{1}{2}ln [/mm] 2x - ln [mm] \bruch{x}{2} [/mm] $
>  
> D= R^+ / {0}

Was ist $ [mm] \ln_a(x) [/mm] $ ?  Also das müsste dann so sein:  [mm] \ln [/mm] (x)

Welche Gleichung?  Diese: [mm] [green]\bruch{1}{2}ln [/mm] 2x - ln [mm] \bruch{x}{2}[/green] [/mm]

>  
> $ ln [mm] \wurzel{2x} [/mm] $ - $ ln [mm] \bruch{x}{2} [/mm] $
>  

>

> $ [mm] \bruch{\wurzel{2x}}{\bruch{x}{2}} [/mm] $

Wieso? Hast Du entlogarithmiert? Wie? Und die andere Seite der Gleichung?

Ich habe enlogaritmiert mit der eulerischen Zahl e
die andere Seite lautet 0 also = 0
>

> $ [mm] \bruch{2x}{\bruch{x^2}{4}} [/mm] $   / hier quadriert

>

> $ [mm] \bruch{8x}{x^2} [/mm] $    / Kehrwert gebildet und multipliziert

>

> $ [mm] \bruch{8}{x} [/mm] $       /  gekürzter Term
>  
> L = {}
>  
> Was ist meine Fehler? Lt. Musterlösung L = { 8 }
>  


Bezug
                        
Bezug
Logarithmusfunktion: Logarithmusgesetz
Status: (Antwort) fertig Status 
Datum: 00:04 Mo 13.12.2010
Autor: Loddar

Hallo Frank_BOS!


> Was ist [mm]\ln_a(x)[/mm] ?  Also das müsste dann so sein:  [mm]\ln[/mm] (x)

Okay.


> Welche Gleichung?  Diese: [mm]\bruch{1}{2}ln 2x - ln \bruch{x}{2}[/mm]

Das ist keine Gleichung, sondern nur ein Term.


> Wieso? Hast Du entlogarithmiert? Wie? Und die andere Seite
> der Gleichung?

Welche andere Seite der Gleichung? Es gab in diesem Thread noch nicht eine einzige Gleichung!

Ansonsten wurde auf den Term(!) eines der MBLogarithmusgesetze angewandt mit:

[mm]\log_b(x) \ : \ \log_b(y) \ = \ \log_b\left(\bruch{x}{y}\right)[/mm]


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de