www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Logik
Logik < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Do 25.11.2010
Autor: Sprudel

Aufgabe
Es seien p(x) (x [mm] \in [/mm] M) und q Aussagen. Beweisen Sie folgende Rechenregel:

[mm] ((\forall: p(x))\Rightarrow [/mm] q [mm] )\gdw( \exists [/mm] x: [mm] p(x)\Rightarrow [/mm] q)).


Meine Idee:

1.q wahr [mm] \Rightarrow ((\forall: p(x))\Rightarrow [/mm] q ) ist wahr und
   ( [mm] \exists [/mm] x: [mm] p(x)\Rightarrow [/mm] q) ist wahr.

2. q falsch [mm] \Rightarrow ((\forall: p(x))\Rightarrow [/mm] q ) ist wahr [mm] \Rightarrow [/mm]
    [mm] ((\forall: p(x))\Rightarrow [/mm] q ) ist falsch
    [mm] \Rightarrow [/mm]  ( [mm] \exists [/mm] x: [mm] p(x)\Rightarrow [/mm] q) ist falsch [mm] \Rightarrow [/mm]
    ( [mm] \exists [/mm] x: [mm] p(x)\Rightarrow [/mm] q) ist wahr

[mm] 3.\Leftarrow [/mm]  ( [mm] \exists [/mm] x: [mm] p(x)\Rightarrow [/mm] q) ist wahr [mm] \Rightarrow [/mm]
   ( [mm] \exists [/mm] x: [mm] p(x)\Rightarrow [/mm] q) ist falsch
    [mm] \Rightarrow((\forall: p(x))\Rightarrow [/mm] q ) ist [mm] falsch\Rightarrow ((\forall: p(x))\Rightarrow [/mm] q ) ist wahr


So ich bin mir ab dem 2. gar nicht sicher ich habe i-wie das gefühl das es falsch ist könntet ihr euch das bitte anschauen und sagen ob es richtig oder falsch ist und wo mein Fehler ist. Außerdem reicht das an beweisen oder muss ich noch was beweisen ???

Vielen Dank schon mal



Ich habe die Frage noch in einem anderen Forum gestellt:http://www.matheboard.de/thread.php?threadid=435859

        
Bezug
Logik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 Do 25.11.2010
Autor: Kugelrund

Ja so eine ähnliche Aufgabe habe ich auch, das würde mich jetzt mal auch interessieren ob dies richtige ist.....

Bezug
        
Bezug
Logik: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Fr 26.11.2010
Autor: Marc

Hallo Sprudel,

> Es seien p(x) (x [mm]\in[/mm] M) und q Aussagen. Beweisen Sie
> folgende Rechenregel:
>  
> [mm]((\forall: p(x))\Rightarrow[/mm] q [mm])\gdw( \exists[/mm] x:
> [mm]p(x)\Rightarrow[/mm] q)).
>  
> Meine Idee:
>  
> 1.q wahr [mm]\Rightarrow ((\forall: p(x))\Rightarrow[/mm] q ) ist
> wahr und
>     ( [mm]\exists[/mm] x: [mm]p(x)\Rightarrow[/mm] q) ist wahr.
>  
> 2. q falsch [mm]\Rightarrow ((\forall: p(x))\Rightarrow[/mm] q ) ist
> wahr [mm]\Rightarrow[/mm]
> [mm]((\forall: p(x))\Rightarrow[/mm] q ) ist falsch
>      [mm]\Rightarrow[/mm]  ( [mm]\exists[/mm] x: [mm]p(x)\Rightarrow[/mm] q) ist
> falsch [mm]\Rightarrow[/mm]
>      ( [mm]\exists[/mm] x: [mm]p(x)\Rightarrow[/mm] q) ist wahr
>
> [mm]3.\Leftarrow[/mm]  ( [mm]\exists[/mm] x: [mm]p(x)\Rightarrow[/mm] q) ist wahr
> [mm]\Rightarrow[/mm]
> ( [mm]\exists[/mm] x: [mm]p(x)\Rightarrow[/mm] q) ist falsch
> [mm]\Rightarrow((\forall: p(x))\Rightarrow[/mm] q ) ist
> [mm]falsch\Rightarrow ((\forall: p(x))\Rightarrow[/mm] q ) ist wahr
>  
>
> So ich bin mir ab dem 2. gar nicht sicher ich habe i-wie
> das gefühl das es falsch ist könntet ihr euch das bitte
> anschauen und sagen ob es richtig oder falsch ist und wo
> mein Fehler ist. Außerdem reicht das an beweisen oder muss
> ich noch was beweisen ???

Allein deine Folgerung bei 2.

> ( [mm]\exists[/mm] x: [mm]p(x)\Rightarrow[/mm] q) ist
> falsch [mm]\Rightarrow[/mm]
>      ( [mm]\exists[/mm] x: [mm]p(x)\Rightarrow[/mm] q) ist wahr

ist ja schon extrem merkwürdig, zumindestens verstehe ich nicht, was damit gemeint sein sollte.

Ich nehme an, du sollst bei dieser Aufgabe auf Rechenregeln aus der Vorlesung zurückgreifen, z.B. auf []solche hier. Wenn wir dir weiter helfen sollen, müsstest du diese Rechenregeln aus deiner Vorlesung uns erstmal mitteilen, weil du natürlich nur diese verwenden darfst.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de