www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Logische Formeln Unsicherheit
Logische Formeln Unsicherheit < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logische Formeln Unsicherheit: Idee
Status: (Frage) beantwortet Status 
Datum: 14:12 Di 24.09.2013
Autor: Angelnoir

Hallo!
Ich schreibe eine Bachelorarbeit, eigentlich in Informatik, allerdings habe ich ein formales Systemmodell, an dem Änderungen über Formeln dargestellt werden. Alle Instanzen des Systems sind Mengen. Ich bin mir bei manchen nicht sicher wie ich korrekt ausdrücke was ich haben möchte.
Es wäre sehr nett, wenn da jemand mal rüber schauen könnte.

Ich möchte aus der Menge D alle Elemente in eine neue Menge packen, deren Zeitstempel = t ist. (d.time bezeichnet dabei den zeitstempel von d)

[mm] \bigcap_{d \in D}(d.time=t) [/mm]

oder

[mm](d \in D \wedge d.time=t)[/mm], wobei hierbei auf jeden Fall noch irgendetwas fehlt

f sei eine Funktion die einen booleschen Wert (true oder false) zurückliefert, ich möchte die und-verknüpfung aller Elemente. Genauer: Sobald ein Ergebnis false ist soll das Gesamtergebnis false sein

[mm]\bigwedge_{n \in N} (f(n))[/mm]

Vielen Dank für eure Hilfe!

Viele Grüße
Angelnoir

        
Bezug
Logische Formeln Unsicherheit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 24.09.2013
Autor: tobit09

Hallo Angenoir,


> Ich möchte aus der Menge D alle Elemente in eine neue
> Menge packen, deren Zeitstempel = t ist. (d.time bezeichnet
> dabei den zeitstempel von d)

Wenn ich dich richtig verstehe, lautet die neue Menge also

     [mm] $\{d\in D\;|\;d.\operatorname{time}=t\}$. [/mm]


> f sei eine Funktion die einen booleschen Wert (true oder
> false) zurückliefert, ich möchte die und-verknüpfung
> aller Elemente. Genauer: Sobald ein Ergebnis false ist soll
> das Gesamtergebnis false sein

Wenn ich dich richtig verstehe, ist $f$ eine Abbildung [mm] $f\colon N\to\{true, false\}$, [/mm] wobei $N$ eine Menge (die Menge der natürlichen Zahlen?) ist.

> [mm]\bigwedge_{n \in N} (f(n))[/mm]

Das ist im Falle $N$ endlich völlig korrekt und eine übliche Schreibweise. Im Falle $N$ unendlich kenne ich diese Schreibweise nicht. Aber sie erscheint mir sehr sinnvoll. Du kannst sie ja einführen und entsprechend definieren:

     [mm] $\bigwedge_{n\in N}f(n):=\begin{cases}\operatorname{true},&\text{falls }f(n)=\operatorname{true}\text{ für alle }n\in N\\\operatorname{false},&\text{falls }f(n)=false\text{ für ein }n\in N\end{cases}$. [/mm]


Viele Grüße
Tobias

Bezug
                
Bezug
Logische Formeln Unsicherheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:13 Mi 25.09.2013
Autor: Angelnoir

Ach natürlich!
[mm]\{ d\in D~|~d.\text{time} = t\} [/mm]

Da stand ich aber auf dem Schlauch ;) Vielen Dank für die Hilfe.

Zum Glück sind meine Mengen alle endlich, da das ganze ja nur eine Abbildung der Realität ist. Mit unendlichen Mengen würde ich noch einiges mehr grübeln müssen.

Bezug
        
Bezug
Logische Formeln Unsicherheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Mi 25.09.2013
Autor: Angelnoir

Eines noch:

Angenommen dass die max Funktion definiert ist, also in etwa so:

[mm]max(a,b)=\begin{cases} a, & \mbox{für } a \geq b \\ b, & \mbox{sonst.} \end{cases}[/mm]

und weiterhin rekursiv:

[mm]max(a,b,c)=max(a,max(c,b)[/mm]

Und nun möchte ich aus der Menge D, den maximalen Zeitstempel eines Elementes.

[mm]max(d.\text{time})\forall d \in D[/mm] ist meine momentane Lösung.
Das ist scherlich nicht korrekt, da die Funktion gar nicht richtig benutzt wird.

Vielleicht:

[mm]max(D.\text{time})[/mm]

oder etwas kompliziert:

[mm] \{t \in D.\text{time}~|~\nexists t^\prime \in D.\text{time} \wedge t^\prime > t\} [/mm]

Vielleicht hat ja jemand noch eine bessere Lösung.

Bezug
                
Bezug
Logische Formeln Unsicherheit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Mi 25.09.2013
Autor: tobit09


> Und nun möchte ich aus der Menge D, den maximalen
> Zeitstempel eines Elementes.

Du suchst also das Maximum der endlichen Menge [mm] $\{d.\operatorname{time}\;|\;d\in D\}$. [/mm] Übliche Schreibweise:

      [mm] $\max\{d.\operatorname{time}\;|\;d\in D\}$ [/mm]

oder auch

      [mm] $\max_{d\in D}d.\operatorname{time}$. [/mm]

Die von dir vorgeschlagene Version

      [mm] $\max D.\operatorname{time}$ [/mm]

ist auch möglich, wenn du vorher

     [mm] $D.\operatorname{time}:=\{d.\operatorname{time}\;|\;d\in D\}$ [/mm]

definierst.


> Angenommen dass die max Funktion definiert ist, also in
> etwa so:
>  
> [mm]max(a,b)=\begin{cases} a, & \mbox{für } a \geq b \\ b, & \mbox{sonst.} \end{cases}[/mm]
>  
> und weiterhin rekursiv:
>  
> [mm]max(a,b,c)=max(a,max(c,b)[/mm]

Auf diese Weise kann man das Maximum von Zahlen [mm] $a_1,\ldots,a_n$ [/mm] für beliebige [mm] $n\in\IN$ [/mm] definieren. Ich sehe in diesem Vorgehen aber zwei Nachteile:
1. Ich halte diese Definition nicht für besonders intuitiv.
2. Dein Ansatz ermöglicht nicht ohne Weiteres die Definition des Maximums einer Menge.


Das Maximum einer nichtleeren endlichen Menge $T$ reeller Zahlen würde ich wie folgt definieren:

Das Maximum von $T$ ist die eindeutig bestimmte Zahl [mm] $t\in [/mm] T$ mit [mm] $t\ge [/mm] s$ für alle [mm] $s\in [/mm] T$.

Dazu ist zu zeigen:
1. Es gibt eine solche Zahl [mm] $t\in [/mm] T$ (per vollständiger Induktion nach [mm] $n\in\IN$ [/mm] mit [mm] $T=\{t_1,\ldots,t_n\}$ [/mm] für gewisse Zahlen [mm] $t_1,\ldots,t_n$). [/mm]
2. Diese Zahl $t$ ist eindeutig bestimmt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de