www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Logistische Funktion
Logistische Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logistische Funktion: Rechenweg
Status: (Frage) beantwortet Status 
Datum: 15:31 Do 18.11.2010
Autor: JumboGecko

Aufgabe
Die Anzahl Zellen y(t) in einer Hefekultur nach t Stunden werde durch die Differentialgleichung y'(t)=ay(t)(K-y(t)) mit K=665 und a=8*10^-4 beschrieben. Am Anfang seien y0=10 Zellen vorhanden.
Wieviele Zellen erwarten sie nach 2 Stunden, wieviele nach 18 Stunden? Bei welchem Wer wird sich die Kultur(in diesem Modell) stabilisieren? Runden sie jeweils plausibel.

Hi,

Also ich habe y(2) und y(18) mit Hilfe von y(t)= K/(1+ 65,5*e^(8+10^-4y+665+t))ausgerechnet.y(2)=28,2 also 29, da ich ja "plausibel" runden soll und ja nach 2 Stunden nicht 28 sondern 28,2 Zellen vorhanden sind, somit ja schon ein Teil der 29ten,oder?..und y(18)=661,99 also 662.
Soweit so gut, doch nun weiß ich nicht wie ich den Wert ausrechne, bei dem sich die Kultur in diesem Modell stabilisiert.
Könnt ihr mir Helfen? Ich habe mir schon überlegt, ob man vielleicht y(t)=... gleich null setzen soll, aber irgendwie finde ich keinen wirklichen Ansatz.

Könnt ihr mir helfen??
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke!


        
Bezug
Logistische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Do 18.11.2010
Autor: ullim

Hi,

die Kultur hat sich stabilisiert wenn wenn keine Zuwächse oder Verluste mehr statt finden. D.h. die Lösungskurve der Differentialgleichung ist konstant. D.h. y'(t)=0 bzw. [mm] \Delta y=|y(t+1)-y(t)|<\epsilon [/mm]

D.h. Du musst den Wert von t suchen ab wann sich y(t) nicht mehr stark ändert.

Aus der Dgl. folgt noch y'(t)=0 dann wenn y(t)=K. D.h. die Dgl. konvergiert im stationären Fall gegen K.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de