www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Lognormalverteilung
Lognormalverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lognormalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Fr 10.06.2011
Autor: MissPocahontas

Aufgabe
Sei X eine standardnormalverteilte Zufallsvariable. Bestimmen Sie die Dichte von [mm] Y:=e^X. [/mm]

Hallo ihr Lieben!

Ich komm mir echt blöd vor, aber ich weiß einfach nicht, wie ich auf die Dichte der Lognormalverteilung komme...wenn [mm] Y=e^X [/mm] und X normalverteilt ist, dann ist lnY ja normalverteilt...jetzt komm ich nicht weiter, kann mir jemand einen Tipp geben? Weil es reicht ja nicht, wenn ich lnY einfach die die Dichte der Normalverteilung einsetze, das sehe ich schon und ln hat ja auch andre Definitionsbereiche...mmh..da müsste ja dann eigentlich noch 1/y hin, aber ich kanns nicht begründen...

        
Bezug
Lognormalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Fr 10.06.2011
Autor: Al-Chwarizmi


> Sei X eine standardnormalverteilte Zufallsvariable.
> Bestimmen Sie die Dichte von [mm]Y:=e^X.[/mm]
>  Hallo ihr Lieben!
>  
> Ich komm mir echt blöd vor, aber ich weiß einfach nicht,
> wie ich auf die Dichte der Lognormalverteilung komme...wenn
> [mm]Y=e^X[/mm] und X normalverteilt ist, dann ist lnY ja
> normalverteilt...jetzt komm ich nicht weiter, kann mir
> jemand einen Tipp geben? Weil es reicht ja nicht, wenn ich
> lnY einfach die die Dichte der Normalverteilung einsetze,
> das sehe ich schon und ln hat ja auch andre
> Definitionsbereiche...mmh..da müsste ja dann eigentlich
> noch 1/y hin, aber ich kanns nicht begründen...


Hallo MissPocahontas,

wenn X standardnormalverteilt ist, dann heisst dies,
dass  $\ [mm] P(X\le{a})\ [/mm] =\ [mm] \integral_{-\infty}^{a}f(x)\ [/mm] dx$
wobei f die Dichtefunktion der Standardnormalverteilung
ist.
Nun suchen wir eine analoge Dichtefunktion g für die
Verteilung Y. Es soll also gelten:

  $\ [mm] P(Y\le{b})\ [/mm] =\ [mm] \integral_{-\infty}^{b}g(y)\ [/mm] dy$

Durch beidseitiges Ableiten nach b erhält man eine
Gleichung für g(b).
Ferner lässt sich die Bedingung [mm] Y\le{b} [/mm] durch eine
Bedingung für X ersetzen.
Der Rest ist eine Anwendung der Kettenregel.

LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de