www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Lokale Extrema berechnen
Lokale Extrema berechnen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lokale Extrema berechnen: Hesse-Matrix semi-definit
Status: (Frage) beantwortet Status 
Datum: 17:22 Sa 14.06.2008
Autor: fkerber

Aufgabe
Untersuchen Sie die Funktion $ h: [mm] \IR^2 ->\IR [/mm] $
$ h(x,y) = [mm] x^3y^2(1-x-y) [/mm] $
auf lokale Extrema!

Hi!

Also ich bin so vorgegangen wie immer, also Jacobi-Matrix und Hesse-Matrix bestimmt. Jetzt ist es allerdings so, dass es ja mögliche Extremstellen gibt, sobald x=0 oder y=0 (die andere Koordinate ist dann egal).
Da habe ich schonmal ein bisschen ein Problem, wie ich das formal hinschreibe, aber sei's drum.

Mein Hauptproblem liegt darin, festzustellen, ob es denn jetzt tatsächlich Extremstellen sind. Setze ich einen solchen Punkt in die Hesse-Matrix ein, so wird diese mal geschickt zur Nullmatrix und ich sehe mich außer Stande über den Weg mit der Definitheit eine Aussage zu treffen, da es ja für semidefinit keine Aussage gibt...

Ich hab jetzt an vielen Stellen gelesen, dass man dann dort direkt prüfen muss. Aber irgendwie steht nirgendwo dabei, wie ich denn prüfen soll.

Kann mir da jemand weiterhelfen, sowohl was die Notation als auch die Lösung der Aufgabe angeht?

Danke,
Ciao, fkerber

        
Bezug
Lokale Extrema berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Sa 14.06.2008
Autor: leduart

Hallo
Du untersuchst einfach die Umgebung von 0,0 indem du  kleine pos und negative Werte für x,y einsetzt, wenn h dann immer <h(0,0) ists ein max, wenn > ein Min, sonst keines von beiden. also etwa (r,r) (-r,r) (-r,-r), (r,-r) einsetzen und h ansehen (r<<1) aber auch andere pkt wie (2r,r) usw! oder einfacher gleich (r,s)
(ich habs nur kurz angesehen, gibts nur (0,0) als Kandidaten?)
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de