www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Lokale Injektivität
Lokale Injektivität < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lokale Injektivität: Kurze Frage
Status: (Frage) beantwortet Status 
Datum: 21:26 Sa 28.02.2009
Autor: Phileas

Hi,

ich habe gerade ein kleines Problem:
Wenn ich die lokale Injektivität einer Funktion zeigen möchte geht das ja soweit ich weiss über die Jacobimatrix (falls deren Determinante ungleich Null ist).
Nun ist aber die Jacobimatrix nicht immer quadratisch, was bedeutet es existiert nicht immer eine Determinante.

Gibt es einen zweiten Weg die lokale Injektivität zu zeigen?
Ein kurzer Tipp würde völlig reichen.

Vielen Dank!

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lokale Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 So 01.03.2009
Autor: Merle23

Sei U offene Teilmenge von [mm] \IR^p [/mm] und [mm]f : U \to \IR^n[/mm] stetig differenzierbar.

Dann sind äquivalent gilt [mm]a) \Rightarrow b)[/mm]:

a) f ist eine Immersion, d.h. [mm]D_p f[/mm] ist für alle [mm]p \in U[/mm] injektiv.
b) f ist lokal injektiv.

edit: Die Rückrichtung ist leider falsch, wie ich leider erst jetzt gemerkt hab.

Eine Gegebeispiel wäre [mm]f:\IR \to \IR,\ x \mapsto x^3[/mm]. Ist global injektiv aber die Ableitung verschwindet für x = 0.

Bezug
                
Bezug
Lokale Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 So 01.03.2009
Autor: Phileas

D.h. ich müsste zeigen, das $ [mm] D_p [/mm] f $für alle $p [mm] \in [/mm] U$  injektiv ist um auf die lokale Injektivität schließen zu können.

Wie mache ich das? Mein Ansatz wäre wieder die Jacobimatrix, wenn diese jedoch wieder nicht quadratisch ist stehe ich wieder ohne Plan da.
Mit würde eine Beschreibung in 3 Stichworten reichen (falls es ein allgemeines Verfahren gibt), ich habe das Gefühl ich sehe grad den Wald vor lauter Bäumen nicht...

Danke schonmal.

Bezug
                        
Bezug
Lokale Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 So 01.03.2009
Autor: Merle23


> D.h. ich müsste zeigen, das [mm]D_p f [/mm]für alle [mm]p \in U[/mm]  
> injektiv ist um auf die lokale Injektivität schließen zu
> können.
>  
> Wie mache ich das? Mein Ansatz wäre wieder die
> Jacobimatrix, wenn diese jedoch wieder nicht quadratisch
> ist stehe ich wieder ohne Plan da.

Die Matrix braucht nicht quadratisch zu sein, damit die dadurch dargestellte Abbildung injektiv ist.

Es muss ja bloß der Kern trivial sein.

Bezug
                                
Bezug
Lokale Injektivität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 So 01.03.2009
Autor: Phileas

Perfekt, das hilft mir weiter, Danke.
Hab da ein paar kleine Schwächen in linearer Algebra :-).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de